如图所示,△OAB是边长为2+3的等边三角形,其中O是坐标原点,顶点A在x轴的正方向上,将△OAB折叠,使点B落在边OA上,记为B′,折痕为EF.(1)设OB′

如图所示,△OAB是边长为2+3的等边三角形,其中O是坐标原点,顶点A在x轴的正方向上,将△OAB折叠,使点B落在边OA上,记为B′,折痕为EF.(1)设OB′

题型:不详难度:来源:
如图所示,△OAB是边长为2+


3
的等边三角形,其中O是坐标原点,顶点A在x轴的正方向上,将△OAB折叠,使点B落在边OA上,记为B′,折痕为EF.
(1)设OB′的长为x,△OB′E的周长为c,求c关于x的函数关系式;
(2)当B′Ey轴时,求点B′和点E的坐标;
(3)当B′在OA上运动但不与O、A重合时,能否使△EB′F成为直角三角形?若能,请求出点B′的坐标;若不能,请说明理由.
答案
(1)∵B′和B关于EF对称,
∴B′E=BE,
∴c=OB′+B′E+OE=OB′+BE+OE=x+OB=x+2+


3


(2)当B′Ey轴时,∠EB′O=90°.
∵△OAB为等边三角形,
∴∠EOB′=60°,OB′=
1
2
EO.
设OB′=a,则OE=2a.
在Rt△OEB′中,tan∠EOB′=
B′E
B′O

∴B′E=B′Otan∠EOB′=


3
a

∵B′E+OE=BE+OE=2+


3

∴a=1,
∴B′(1,0),E(1,


3
).

(3)答:不能.
理由如下:
∵∠EB′F=∠B=60°,
∴要使△EB′F成为直角三角形,则90°角只能是∠B′EF或∠B′FE.
假设∠B′EF=90°,
∵△FB′E与△FBE关于FE对称,
∴∠BEF=∠B′EF=90°,
∴∠BEB′=180°,
则B′、E、B三点在同一直线上,B′与O重合.
这与题设矛盾.
∴∠B′EF≠90°.
即△EB′F不能为直角三角形.
同理,∠B′FE=90°也不成立.
∴△EB′F不能成为直角三角形.
举一反三
如图,将一等边三角形剪去一个角后,∠1+∠2=______度.
题型:不详难度:| 查看答案
边长为a的正三角形的面积等于______.
题型:不详难度:| 查看答案
P是等边△ABC内部一点,∠APB、∠BPC、∠CPA的大小之比是5:6:7,所以PA、PB、PC的长为边的三角形的三个角的大小之比是______.
题型:不详难度:| 查看答案
在等边△ABC中,D、E分别在AC、BC上,且AD=CE=nAC,连AE、BD相交于P,过B作BQ⊥AE于点Q,连CP.
(1)∠BPQ=______,
PQ
BP
=______
(2)若BP⊥CP,求
AP
BP

(3)当n=______时,BP⊥CP?
题型:不详难度:| 查看答案
已知等边△OAB的边长为a,以AB边上的高OA1为边,按逆时针方向作等边△OA1B1,A1B1与OB相交于点A2
(1)求线段OA2的长;
(2)若再以OA2为边,按逆时针方向作等边△OA2B2,A2B2与OB1相交于点A3,按此作法进行下去,得到△OA3B3,△OA4B4,…△OAnBn(如图).求△OA6B6的周长.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.