解:(1)故答案为:=; (2)过E作EF∥BC交AC于F, ∵等边三角形ABC, ∴∠ABC=∠ACB=∠A=60°,AB=AC=BC, ∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°, 即∠AEF=∠AFE=∠A=60°, ∴△AEF是等边三角形, ∴AE=EF=AF, ∵∠ABC=∠ACB=∠AFE=60°, ∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°, ∵DE=EC, ∴∠D=∠ECD, ∴∠BED=∠ECF, 在△DEB和△ECF中 ∴△DEB≌△ECF, ∴BD=EF=AE,即AE=BD, 故答案为:=; (3)CD=1或3。 |