如图,已知∠B=35°,∠D=43°,AM、CM分别平分∠BAD和∠BCD.写出求∠M的代数式,并计算出∠M的度数.

如图,已知∠B=35°,∠D=43°,AM、CM分别平分∠BAD和∠BCD.写出求∠M的代数式,并计算出∠M的度数.

题型:不详难度:来源:
如图,已知∠B=35°,∠D=43°,AM、CM分别平分∠BAD和∠BCD.写出求∠M的代数式,并计算出∠M的度数.
答案
∵∠B+∠BAM=∠M+∠BCM,
∴∠BAM-∠BCM=∠M-∠B,
同理,∠MAD-∠MCD=∠D-∠M,
∵AM、CM分别平分∠BAD和∠BCD,
∴∠BAM=∠MAD,∠BCM=∠MCD,
∴∠M-∠B=∠D-∠M,
∴∠M=
1
2
(∠B+∠D)=
1
2
(35°+43°)=39゜.
举一反三
如图,AD⊥BC,∠1=∠2,∠C=65°,求∠BAC.
题型:不详难度:| 查看答案
说理解答题
在空白处填上适当的内容(理由或数学式)
解:在ABC中
∠B+∠ACB+∠BAC=180°______
∴∠BAC=180°-∠B-______(等式的性质)
=180°-36°-110°=______
∵AE是∠BAC的平分线(已知)
∴∠CAE=______∠BAC=17°
∵AD是BC边上的高即AD⊥BC(已知)
∴∠D=______
∵∠ACE是△ACD的外角(已知)
∴∠ACE=∠CAD+∠D______
∴∠CAD=∠ACE-∠D(等式的性质)
=110°-90°═20°
∴∠DAE=∠CAD+______
=20°+17°
=______.
题型:不详难度:| 查看答案
已知:点D是△ABC的BC边的延长线上的一点,DF⊥AB交AB于F,交AC于E,∠A=30°,∠D=20°,求∠ACB的度数.
题型:不详难度:| 查看答案
AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______°.
题型:不详难度:| 查看答案
在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.形状不确定
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.