在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、

在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、

题型:浙江省同步题难度:来源:
在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.
(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是(    );此时=(    );
(2)如图2,点M、N边AB、AC上,且当DM?DN时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;
(3)如图3,当M、N分别在边AB、CA的延长线上时,若AN=x,则Q=(    )(用x、L表示).
答案
解:(1)如图,BM、NC、MN之间的数量关系BM+NC=MN.此时
(2)猜想:结论仍然成立.
证明:如图,延长AC至E,使CE=BM,连接DE.
∵BD=CD,且∠BDC=120°,
∴∠DBC=∠DCB=30°.
又△ABC是等边三角形,
∴∠MBD=∠NCD=90°.
在△MBD与△ECD中:
∴△MBD≌△ECD(SAS).
∴DM=DE,∠BDM=∠CDE.
∴∠EDN=∠BDC﹣∠MDN=60°.
在△MDN与△EDN中:
∴△MDN≌△EDN(SAS).
∴MN=NE=NC+BM.
△AMN的周长Q
=AM+AN+MN
=AM+AN+(NC+BM)
=(AM+BM)+(AN+NC)
=AB+AC
=2AB.
而等边△ABC的周长L=3AB.

(3)如图,当M、N分别在AB、CA的延长线上时,若AN=x,
则Q=2x+(用x、L表示).
举一反三
如图所示,ABCD中,M,N,P,Q分别为AB,BC,CD,DA上的点,且AM=BN=CP=DQ.求证:四边形MNPQ为平行四边形.
题型:同步题难度:| 查看答案
如图所示,△ABC中,∠ACB=90°,AC的垂直平分线DE交AC于D,交AB于E,点F在BC的延长线上,且∠CDF=∠A,求证:四边形DECF是平行四边形.
题型:同步题难度:| 查看答案
如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.
求证:BE=CF.
题型:同步题难度:| 查看答案
如图所示,矩形ABCD,过重心O任意作一直线分别交边于E、F,证明直线EF把矩形分成面积相等的两部分。直线EF把矩形的周长也分成相等的两部分吗?为什么?
题型:同步题难度:| 查看答案
如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.
题型:同步题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.