如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥C

如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥C

题型:不详难度:来源:
如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.

(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,∠EFD=∠BCD,并说明理由.
答案
解:(1)证明:∵在△ABC和△ADC中,,∴△ABC≌△ADC(SSS)。
∴∠BAC=∠DAC。
∵在△ABF和△ADF中,,∴△ABF≌△ADF(SAS)。
∴∠AFD=∠AFB。
∵∠AFB=∠AFE,∴∠AFD=∠CFE。
(2)证明:∵AB∥CD,∴∠BAC=∠ACD。
又∵∠BAC=∠DAC,∴∠CAD=∠ACD。∴AD=CD。
∵AB=AD,CB=CD,∴AB=CB=CD=AD。∴四边形ABCD是菱形。
(3)当EB⊥CD时,∠EFD=∠BCD,理由如下:
∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF。
∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS)。
∴∠CBF=∠CDF。
∵BE⊥CD,∴∠BEC=∠DEF=90°。∴∠EFD=∠BCD。
解析
(1)由SSS定理证明△ABC≌△ADC可得∠BAC=∠DAC,再证明△ABF≌△ADF,可得∠AFD=∠AFB,进而得到∠AFD=∠CFE。
(2)首先证明∠CAD=∠ACD,再根据等角对等边可得AD=CD,再由条件AB=AD,CB=CD可得AB=CB=CD=AD,可得四边形ABCD是菱形。
(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,从而得到∠EFD=∠BCD。
举一反三
如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA.
求证:四边形ABCD是菱形.

题型:不详难度:| 查看答案
若菱形的两条对角线分别为2和3,则此菱形的面积是     
题型:不详难度:| 查看答案
如图,在平行四边形ABCD中,过AC中点O作直线,分别交AD、BC于点E、F.
求证:△AOE≌△COF.

题型:不详难度:| 查看答案
如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是
A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF

题型:不详难度:| 查看答案
如图,AC⊥CD,垂足为点C,BD⊥CD,垂足为点D,AB与CD交于点O.若AC=1,BD=2,CD=4,则AB=     

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.