(6分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AE∥BC, DE∥AB.证明:(1)AE=DC;(2)四边形ADCE为矩形.

(6分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AE∥BC, DE∥AB.证明:(1)AE=DC;(2)四边形ADCE为矩形.

题型:不详难度:来源:
(6分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AE∥BC, DE∥AB.

证明:(1)AE=DC;
(2)四边形ADCE为矩形.
答案
证明:
(1)在△ABC中,∵AB=AC,AD⊥BC,
∴BD=DC······························································································ 1分
∵AE∥BC, DE∥AB,
∴四边形ABDE为平行四边形······································································ 2分
∴BD=AE,···························································································· 3分
∵BD=DC
∴AE = DC.·························································································· 4分
(2)
解法一:∵AE∥BC,AE = DC,
∴四边形ADCE为平行四边形.··································································· 5分
又∵AD⊥BC,
∴∠ADC=90°,
∴四边形ADCE为矩形.··········································································· 6分
解法二:
∵AE∥BC,AE = DC,
∴四边形ADCE为平行四边形······································································ 5分
又∵四边形ABDE为平行四边形
∴AB=DE.∵AB=AC,∴DE=AC.
∴四边形ADCE为矩形.··········································································· 6分
解析

举一反三
如图,在正方形网格中,请画一个正方形使它等于已知正方形ABCD的面积的2倍.

题型:不详难度:| 查看答案
(本题6分)如图,四边形是正方形,点上,,垂足为,请你在上确定一点,使,请你写出两种确定点G的方案,并写出其中一种方案的具体作法和证明

方案

 


 
一:                                             ;方案

 


 
二:(1)作法:(2) 证明:
题型:不详难度:| 查看答案
. (7分)已知:如图,□ABCD中,∠BCD的平分线交AB于E,交DA的延长线于F.
(1) 求证:DF=DC;
(2) 当DE⊥FC时,求证:AE=BE.

题型:不详难度:| 查看答案
(9分)如图(1),正方形ABCD中,点H从点C出发,沿CB运动到点B停止.连
结DH交正方形对角线AC于点E,过点E作DH的垂线交线段AB、CD于点F、G.
(1)求证: DH=FG;
(2)在图(1)中延长FG与BC交于点P,连结DF、DP(如图(2)),试探究DF与DP的关系,并说明理由.

题型:不详难度:| 查看答案
(7分)如图,在四边形ABCD中,AD//BC,E、F为AB上两点,且△DAF
≌△CBE.

求证:(1)∠A=90°;
(2)四边形ABCD是矩形.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.