菱形具有而矩形不一定具有的性质是( )A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补
题型:无锡难度:来源:
菱形具有而矩形不一定具有的性质是( )A.对角线互相垂直 | B.对角线相等 | C.对角线互相平分 | D.对角互补 |
|
答案
A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求; B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求; C、菱形和矩形的对角线都互相平分;故本选项不符合要求; D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求; 故选A. |
举一反三
如图所示,在矩形ABCD中,点E,F在BC边上,且BE=CF,AF,DE相交于点M, 求证:AM=DM. |
如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的( ) |
已知:如图所示,在矩形ABCD中,E为DC上的一点,BF⊥AE于点F,且BF=BC,求证:AE=AB. |
如图,矩形ABCD的周长为20cm,两条对角线相交于O点,过点O作AC的垂线EF,分别交AD,BC于E,F点,连接CE,则△CDE的周长为( ) |
在矩形ABCD中,对角线AC、BD相交于点O,过点O作OE⊥BC,垂足为E,连接DE交AC于点P,过P作PF⊥BC,垂足为F,则的值是______. |
最新试题
热门考点