问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由 探究展示:小宇同学展示出如下正确的解法: 解:OM=ON, 证明如下:连接CO,则CO是AB边上中线, ∵CA=CB, ∴CO是∠ACB的角平分线(依据1) ∵OM⊥AC,ON⊥BC, ∴OM=ON(依据2)反思交流: (1)上述证明过程中的“依据1”和“依据2”分别是指: 依据1: 依据2: (2)你有与小宇不同的思考方法吗?请写出你的证明过程. 拓展延伸: (3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程. |