延长EF与CD交于点G,延长FE与AB交于H点, ∵∠AEF=∠DFE,∴∠AEH=∠DFG, ∵∠EAH=∠FDG,AE=DF ∴△AEH≌△DFG, ∴AH=DG,
(1)∵∠AEF=∠DFE,∠BAE=∠FDC=30° ∴∠EAD=∠FDA,且AE=DF ∴四边形ADFE是等腰梯形,且EF∥AD,
(2)正方形ABCD的边长为2, 则在直角△AEH中,AH=BH=1, ∴AE====, EH=, 即EF=2-, 故AE+BE+EF+CF+DF, =4×+2-, =2+2. 答:AE+BE+EF+CF+DF的长度为2+2.
|