已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动,顶点D在y轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都

已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动,顶点D在y轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都

题型:不详难度:来源:
已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动,顶点D在y轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP.
(1)当OA=OD时,点D的坐标为______,∠POA=______°;
(2)当OA<OD时,求证:OP平分∠DOA;
(3)设点P到y轴的距离为d,则在点A,D运动的过程中,d的取值范围是什么?
答案
(1)∵四边形ABCD为正方形,
∴△ADP是等腰直角三角形,
又∵OA=OD,
∴△AOD是等腰直角三角形,
∴四边形AODP是正方形,
∵正方形ABCD的边长为4,
∴AC=BD=


42+42
=4


2

∴AP=DP=
1
2
×4


2
=2


2

∴点D的坐标为(0,2


2
),∠POA=45°;

(2)证明:如图,过点P作PM⊥x轴于点M,PN⊥y轴于点N,
∵四边形ABCD是正方形,
∴PD=PA,∠DPA=90°,
∵PM⊥x轴于点M,PN⊥y轴于点N,
∴∠PMO=∠PNO=∠PND=90°,
∵∠NOM=90°,
∴四边形NOMP中,∠NPM=90°,
∴∠DPA=∠NPM,
∵∠1=∠DPA-∠NPA,∠2=∠NPM-∠NPA,
∴∠1=∠2,
∵在△DPN和△APM中,





∠PND=∠PMA
∠1=∠2
PD=PA

∴△DPN≌△APM(AAS),
∴PN=PM,
∴OP平分∠DOA;

(3)当A、O重合时,点P到y轴的距离最小,
d=
1
2
×4=2,
当OA=OD时,点P到y轴的距离最大,d=PD=2


2

∵点A,D都不与原点重合,
∴2<d≤2


2

举一反三
如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6


2
,那么AC的长等于(  )
A.12B.16C.4


3
D.8


2

题型:不详难度:| 查看答案
正方形ABCD中,∠EAF=45°,BE=3,DF=4,则EF的长是______.
题型:不详难度:| 查看答案
已知正方形ABCD的边长是4,对角线AC、BD交于点O,点E在线段AC上,且OE=
2
3


6
,则∠ABE的度数______度.
题型:不详难度:| 查看答案
已知:正方形ABCD中,对角线AC、BD相交于点O,∠BAC的平分线AF交BD于点E,交BC于点F,
求证:OE=
1
2
CF.
题型:不详难度:| 查看答案
如图,四边形ABCD是一个正方形.
(1)请你在平面内找到一个点O,并连接OA、OB、OC、OD使得到△OAB、△BOC、△COD、△OAD是全等的等腰三角形.
(2)写出你找到的等腰三角形的顶角的度数.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.