已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足。求证:AP=EF。

已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足。求证:AP=EF。

题型:湖南省期末题难度:来源:
已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足。
求证:AP=EF。
答案
证明:如图,连接PC,
∵PE⊥DC,PF⊥BC,ABCD是正方形,
∴∠PEC=∠PFC=∠ECF=90°,
∴四边形PECF为矩形,
∴PC=EF,
又∵P为BD上任意一点,
∴PA、PC关于BD对称,
可以得出,PA=PC,
所以EF=AP。
举一反三
数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平行线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
题型:浙江省同步题难度:| 查看答案
如图,以正方形ABCD的边AB为一边向外作等边△ABE,则∠BED的度数为
[     ]
A.55°
B.45°
C.40°
D.42.5°
题型:同步题难度:| 查看答案
已知正方形及两条对角线,则图中等腰三角形的个数是
[     ]
A.8个
B.6个
C.4个
D.2个
题型:同步题难度:| 查看答案
已知正方形ABCD的边长为2,E、F分别BC和CD边上的中点,则S△AEF=[     ]

A.
B.
C.2
D.


题型:同步题难度:| 查看答案
下列命题中,正确的是[     ]
A.四边相等的四边形是正方形
B.四角相等的四边形是正方形
C.对角线垂直的平行四边形是正方形
D.对角线相等的菱形是正方形
题型:同步题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.