如图,用6个全等的等腰梯形纸板不重叠不留空隙地拼成一个边框为正六边形的纸环,则等腰梯形的四个角中最小的角为______度.

如图,用6个全等的等腰梯形纸板不重叠不留空隙地拼成一个边框为正六边形的纸环,则等腰梯形的四个角中最小的角为______度.

题型:不详难度:来源:
如图,用6个全等的等腰梯形纸板不重叠不留空隙地拼成一个边框为正六边形的纸环,则等腰梯形的四个角中最小的角为______度.
答案
∵正六边形的内角是120度
∠1=120°
∴∠2+∠3=360°-120°=240°
∵∠2=∠3
∴∠2=∠3=120°
∴等腰梯形的四个角中最小的角为:180°-120°=60°
举一反三
如图所示,已知等腰梯形ABCD中,ADBC,下底BC与上底AD的差恰好等于腰长AB,则∠BAD=(  )
A.120°B.135°C.150°D.60°

题型:不详难度:| 查看答案
已知在梯形ABCD中,ADBC,∠A=90°,∠D=150°,CD=8,则AB=______.
题型:不详难度:| 查看答案
如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B⇒A,B⇒C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.
(1)若a=4厘米,t=1秒,则PM=______厘米;
(2)若a=5厘米,求时间t,使△PNB△PAD,并求出它们的相似比;
(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;
(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,在四边形ABCD中,AD<BC,AC与BD相交于O,现给出如下三个论断:
①AB=DC;②∠1=∠2;③ADBC.
请你选择其中两个论断为条件,另外一个论断为结论,构造一个命题.
(1)在构成的所有命题中,是真命题的概率P=______;
(2)在构成的真命题中,请选择一个加以证明.
题型:不详难度:| 查看答案
如图,梯形ABCD中,ADBC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.
(1)求EG的长;
(2)求证:CF=AB+AF.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.