已知:直角梯形ABCD中,AD∥BC,∠B为直角.试问:当AD+BC与DC满足什么条件时,以AB为直径的圆与DC相交、相切、相离?并说明理由.
题型:不详难度:来源:
已知:直角梯形ABCD中,AD∥BC,∠B为直角. 试问:当AD+BC与DC满足什么条件时,以AB为直径的圆与DC相交、相切、相离?并说明理由. |
答案
若设以AB为直径的圆和CD相切于点E. 根据切线长定理得到AD=DE,BC=CE.则此时AD+BC=CD; 则若以AB为直径的圆与DC相交,则此时AD+BC<CD; 则以AB为直径的圆与DC相离,则此时AD+BC>CD. |
举一反三
直角梯形ABCD,AD∥BC,∠B=90°,且腰AB=5,两底差为12,则另一腰CD=______. |
如图,梯形ABCD中,AB∥CD,AC,BD交于点O,若S△CDO=2,S△COB=8,则S△OAB=______. |
如图,在等腰梯形ABCD中,AD∥BC,BD⊥DC,对角线BD平分∠ABC,梯形的周长是30 cm,则其面积为______cm2.
|
在课外活动课上,老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm2,则对角线所用的竹条至少需 ______cm. |
下列说法正确的是( )A.等腰梯形的对角线互相平分 | B.有两个角相等的梯形是等腰梯形 | C.对角线相等的四边形是等腰梯形 | D.等腰梯形的对角线相等 |
|
最新试题
热门考点