如图,Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心、CA为半径的圆与AB、BC分别交于点D、E.求AB、AD的长.

如图,Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心、CA为半径的圆与AB、BC分别交于点D、E.求AB、AD的长.

题型:天津月考题难度:来源:
如图,Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心、CA为半径的圆与AB、BC分别交于点D、E.求AB、AD的长.
答案
解:在Rt△ABC中,AC=3,BC=4;
根据勾股定理,得AB=5. 延长BC交⊙C于点F,
则有:EC=CF=AC=3(⊙C的半径),
BE=BC﹣EC=1,BF=BC+CF=7;
由割线定理得,BE·BF=BD·BA,于是BD=
所以AD=AB﹣BD=

举一反三
如果一直角三角形的三边为a,b,c,∠B=90°,那么关于x的方程a(x2﹣1)﹣2cx+b(x2+1)=0的根的情况为 [     ]
A.有两个相等的实数根
B.有两个不相等的实数根
C.没有实数根
D.无法确定根的情况
题型:四川省月考题难度:| 查看答案
已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)如图①,若AB=2,∠P=30°,求AP的长(结果保留根号);
(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.
题型:湖北省期末题难度:| 查看答案
如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE:CD=5:24
(1)求CD的长;
(2)现汛期来临,水面要以每小时4m的速度上升,则经过多长时间桥洞会刚刚被灌满?
题型:江西省期末题难度:| 查看答案
如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),D为⊙C在第一象限内的一点且∠ODB=60°,解答下列各题:
(1)求线段AB的长及⊙C的半径;
(2)求B点坐标及圆心C的坐标.
题型:江西省期末题难度:| 查看答案
如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高。
(1)求AB的长;
(2)求△ABC的面积;
(3)求CD的长。
题型:宁夏自治区期中题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.