(1)∵AB是⊙O的直径,DE=AB, ∴OA=OC=OE=DE, 则∠EOD=∠CDB,∠OCE=∠OEC, 设∠CDB=x,则∠EOD=x,∠OCE=∠OEC=2x, 又∠BOC=108°,∴∠CDB+∠OCD=108°, ∴x+2x=108,x=36°. ∴∠CDB=36°.
(2)①有三个:△DOE,△COE,△COD. ∵OE=DE,∠CDB=36°, ∴△DOE是黄金三角形; ∵OC=OE,∠COE=180°-∠OCE-∠OEC=36°. ∴△COE是黄金三角形; ∵∠COB=108°, ∴∠COD=72°; 又∠OCD=2x=72°, ∴∠OCD=∠COD. ∴OD=CD, ∴△COD是黄金三角形;
②∵△COD是黄金三角形, ∴=, ∵OD=2, ∴OC=-1, ∵CD=OD=2,DE=OC=-1, ∴CE=CD-DE=2-(-1)=3-;
③存在,有三个符合条件的点P1、P2、P3, 如图所示, ⅰ以OE为底边的黄金三角形:作OE的垂直平分线分别交直线AB、CD得到点P1、P2; ⅱ以OE为腰的黄金三角形:点P3与点A重合. |