(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等边△AMN,联结CN.求证:∠ABC=∠ACN.【类比探究】

(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等边△AMN,联结CN.求证:∠ABC=∠ACN.【类比探究】

题型:不详难度:来源:
(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等边△AMN,联结CN.求证:∠ABC=∠ACN.

【类比探究】
(2)如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.

【拓展延伸】
(3)如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

答案
证明见解析.
解析

试题分析:(1)先证△BAM≌△CAN,再由全等三角形性质得到结论;
(2)先证△BAM≌△CAN,再由全等三角形性质得到结论;
(3)先证△ABC∽△AMN,再证△BAM∽△CAN,由相似三角形性质得到结论。
试题解析:(1)∵△ABC、△AMN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
∴△BAM≌△CAN(SAS),
∴∠ABC=∠ACN;
(2)结论∠ABC=∠ACN仍成立.
理由如下:∵△ABC、△AMN是等边三角形,
∴AB=AC,AM=AN,
∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
∴△BAM≌△CAN(SAS),
∴∠ABC=∠ACN;
(3)∠ABC=∠ACN.
理由如下:
∵BA=BC,MA=MN,顶角∠ABC=∠AMN,
∴底角∠BAC=∠MAN,
∴△ABC∽△AMN,
 ,
又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,
∴∠BAM=∠CAN,
∴△BAM∽△CAN,
∴∠ABC=∠ACN.
举一反三
下列各组中的四条线段成比例的是(    )
A.4cm、2cm、1cm、3cmB.1cm、2cm、3cm、5cm
C.3cm、4cm、5cm、6cmD.1cm、2cm、2cm、4cm

题型:不详难度:| 查看答案
如图,已知△ABC∽△DEF,∠A=70°,∠C=50°,则∠E=    °.

题型:不详难度:| 查看答案
如图,路灯距离地面8米,身高1.6米的小亮站在距离灯的底部(点O)20米的A处,则小亮的影子AM长为            米.

题型:不详难度:| 查看答案
如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,每个小正方形的边长都为1.

(1)在图上标出位似中心D的位置,并写出该位似中心D的坐标是               
(2)求△ABC与△A′B′C′的面积比.
题型:不详难度:| 查看答案
如图,在梯形ABCD中,AB∥CD,∠DAB=90°,AC⊥BC.

(1)求证:△ADC∽△BCA;
(2)若AB=9cm,AC=6cm,求梯形ABCD中位线的长度.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.