如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,横杆AB与CD的距离是3m,则P到AB的距离是 m.
题型:不详难度:来源:
如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,横杆AB与CD的距离是3m,则P到AB的距离是 m.
|
答案
1.5. |
解析
试题分析:根据AB∥CD,易得,△PAB∽△PCD,根据相似三角形对应高之比等于对应边之比,列出方程求解即可. |
举一反三
如图,正方形ABCD中,点N为AB的中点,连接DN并延长交CB的延长线于点P,连接AC交DN于点M,若PN=3,则DM的长为______________ 。
|
在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N. (1)如图1,当点M在AB边上时,连接BN
①试说明:; ②若∠ABC=60°,AM=4,求点M到AD的距离. (2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.
|
(已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE。
(1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC·AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由。 |
已知:正方形ABCD的边长为1,射线AE与射线BC交于点E,射线AF与射线CD交于点F,∠EAF=45°. (1)如图1,当点E在线段BC上时,试猜想线段EF、BE、DF有怎样的数量关系?并证明你的猜想.
(2)设BE=x,DF=y,当点E在线段BC上运动时(不包括点B、C),如图1,求y关于x的函数解析式,并指出x的取值范围. (3)当点E在射线BC上运动时(不含端点B),点F在射线CD上运动.试判断以E为圆心以BE为半径的⊙E和以F为圆心以FD为半径的⊙F之间的位置关系. (4)当点E在BC延长线上时,设AE与CD交于点G,如图2.问⊿EGF与⊿EFA能否相似,若能相似,求出BE的值,若不可能相似,请说明理由.
|
如图,在△ACM中,△ABC、△BDE和△DFG都是等边三角形,且点E、G在△ACM边CM上,设等边△ABC、△BDE和△DFG的面积分别为S1、S2、S3,若S1=9,S3=1,则S2= .
|
最新试题
热门考点