如图△ABC中,BC=10,AC=17,CD=8,BD=6.求:(1)AD的长,(2)△ABC的面积.

如图△ABC中,BC=10,AC=17,CD=8,BD=6.求:(1)AD的长,(2)△ABC的面积.

题型:不详难度:来源:
如图△ABC中,BC=10,AC=17,CD=8,BD=6.
求:(1)AD的长,(2)△ABC的面积.

答案
(1)15   (2)84
解析

试题分析:(1)根据已知利用勾股定理的逆定理求得CD⊥AB,再根据勾股定理求得AD的长即可.
(2)根据已知可求得AB的长,CD为△ABC的高,从而根据三角形的面积公式求值即可.
解:(1)∵BC=10,AC=17,CD=8,BD=6
∴BC2=CD2+BD2∴CD⊥AB
∴AD==15;
(2)∵AD=15,BD=6
∴AB=21
∴SABC=×21×8=84.
点评:此题主要考查学生对勾股定理的逆定理及三角形面积的综合运用.
举一反三
如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有(  )

A. 2个 B. 3个 C. 4个 D. 5个
题型:不详难度:| 查看答案
如图,一个底角为70°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=     

题型:不详难度:| 查看答案
如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,则D到AB的距离为    cm.

题型:不详难度:| 查看答案
如图,在△ABC中,AB=AC,D是底边BC的中点,作DE⊥AB于E,DF⊥AC于F
求证:DE=DF.
证明:∵AB=AC,∴∠B=∠C①.
在△BDE和△CDF中,∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF②.∴DE=DF③.
上面的证明过程是否正确?若正确,请写出①、②和③的推理根据.
(2)请你写出另一种证明此题的方法.

题型:不详难度:| 查看答案
如图,在某小区的休闲广场有一个正方形花园ABCD,为了便于观赏,要在AD、BC之间修一条小路,在AB、DC之间修另一条小路,使这两条小路等长.设计师给出了以下几种设计方案:
①如图1,E是AD上一点,过A作BE的垂线,交BE于点O,交CD于点H,则线段AH、BE为等长的小路;

②如图2,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,则线段GH、BE为等长的小路;

③如图3,过正方形ABCD内任意一点O作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,则线段GH、EF为等长的小路;

根据以上设计方案,解答下列问题:
(1)你认为以上三种设计方案都符合要求吗?
(2)要根据图1完成证明,需要证明△   ≌△   ,进而得到线段  =  
(3)如图4,在正方形ABCD外面已经有一条夹在直线AD、BC之间长为EF的小路,想在直线AB、DC之间修一条和EF等长的小路,并且使这条小路的延长线过EF上的点O,请画草图(加以论述),并给出详细的证明.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.