【问题提出】规定:四条边对应相等,四个角对应相等的两个四边形全等.我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.【初步思考】在

【问题提出】规定:四条边对应相等,四个角对应相等的两个四边形全等.我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.【初步思考】在

题型:不详难度:来源:
【问题提出】
规定:四条边对应相等,四个角对应相等的两个四边形全等.
我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.
【初步思考】
在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件,满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.
【深入探究】
小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:
Ⅰ一条边和四个角对应相等;
Ⅱ二条边和三个角对应相等;
Ⅲ三条边和二个角对应相等;
Ⅳ四条边和一个角对应相等.
(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.
(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.
已知:如图,          
求证:                     
证明:

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形和四边形为例,分为以下四类:




其中能判定四边形和四边形全等的是     (填序号),概括可得“全等四边形的判定方法”,这个判定方法是         
(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个全等四边形的判定方法.
答案
不一定全等;①②③
解析

试题分析:(1)如正方形与矩形有一条边对应相等,但显然不一定全等.   2分
(2)已知:如图,四边形ABCD和四边形A1 B1 C1 D1中,ABA1 B1BCB1 C1CDC1 D1DAD1A1,∠B=∠B1

求证:四边形ABCD ≌ 四边形A1 B1 C1 D1.  3分
证明:连接ACA1 C1
ABA1 B1,∠B=∠B1BCB1 C1
∴ △ABC ≌ △A1 B1 C1
ACA1 C1,∠BAC=∠B1 A1 C1
BCA=∠B1 C1A1
又∵CDC1 D1DAD1A1
∴ △AC D≌ △A1 B1 C1
∴ ∠D=∠D1
∴ ∠BAD=∠B1 A1 D1,∠BCD=∠B1 C1 D1
∴ 四边形ABCD ≌ 四边形A1 B1 C1 D1.  6分
(3)①②③;      7分
有一组邻边和三个角对应相等的两个四边形全等.   8分
(4)分为四类:
AB=A1B1BC=B1C1CD=C1D1,∠A=∠A1,∠B=∠B1
AB=A1B1BC=B1C1CD=C1D1,∠A=∠A1,∠C=∠C1
AB=A1B1BC=B1C1CD=C1D1,∠A=∠A1,∠D=∠D1
AB=A1B1BC=B1C1CD=C1D1,∠B=∠B1,∠C=∠C1.  11分
有三条边和这三条边中每一组邻边的夹角对应相等的两个四边形全等
点评:解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
举一反三
下列三角形中,是直角三角形的是(   )
A.三角形的三边满足关系a+b=c
B.三角形的三边长分别为2、3、4
C.三角形的一边等于另一边的一半
D.三角形的三边长为7,24,25

题型:不详难度:| 查看答案
一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是(   )
A.12米B.13米C.14米D.15米

题型:不详难度:| 查看答案
已知直角三角形两边的长为3和4,则此三角形的周长为( ).
A.12B.7+C.12或7+D.以上都不对

题型:不详难度:| 查看答案
将一根长24 cm的筷子置于底面直径为5 cm,高为12 cm的圆柱形水杯中,如图,设筷子露在杯子外面的长是h cm,则h的取值范围是__
.
题型:不详难度:| 查看答案
一个角与它的补角的比是1:5,则这个角的度数是           
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.