如图,OM⊥ON.已知边长为2的正三角形,两顶点分别射线OM,ON上滑动,当∠OAB = 21°时, ∠NBC =        。滑动过程中,连结OC,则OC

如图,OM⊥ON.已知边长为2的正三角形,两顶点分别射线OM,ON上滑动,当∠OAB = 21°时, ∠NBC =        。滑动过程中,连结OC,则OC

题型:不详难度:来源:
如图,OM⊥ON.已知边长为2的正三角形,两顶点分别射线OM,ON上滑动,当∠OAB = 21°时, ∠NBC =        。滑动过程中,连结OC,则OC的长的最大值是        
答案
51O   , .
解析

试题分析:等边三角形各内角为60°,
∵∠NBC=180°-∠ABC-∠ABO,∠ABO=90°-∠OAB,∠OAB=21°,
∴∠NBC=51°;
取AB中点D,连OD,DC,有OC≤OD+DC,
当O、D、C共线时,OC有最大值,最大值是OD+CD.
∵△ABC为等边三角形,D为中点,
∴BD=1,BC=2,根据勾股定理得:CD=
又△AOB为直角三角形,D为斜边AB的中点,
∴OD=AB=1,
∴OD+CD=1+,即OC的最大值为1+
故答案为:51°;1+

点评:找出OC最大时的长为CD+OD是解本题的关键.
举一反三
(1)已知角a和线段c如图所示,求作等腰三角形,使其底角∠B=a,腰长AB =" c," 要求仅用直尺和圆规作图,并保留作图痕迹. (不写作法)
(2)若a=45O,c=2,求此三角形ABC的面积.
题型:不详难度:| 查看答案
如图,已知直线  求的度数.
题型:不详难度:| 查看答案
如图,的一个外角,平分,且,请问 是等腰三角形吗?为什么?
题型:不详难度:| 查看答案
如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按的路径运动,且速度为每秒1㎝,设出发的时间为t秒.

(1)出发2秒后,求△ABP的周长。
(2)问t为何值时,△BCP为等腰三角形?
(3)另有一点Q,从点C开始,按的路径运动,且速度为每秒2㎝,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动。当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
题型:不详难度:| 查看答案
已知一个等腰三角形两内角的度数之比为,则这个等腰三角形顶角的度数为(   )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.