图(1)中,C点为线段AB上一点,△ACM,△CBN是等边三角形,AN与BM相等吗?说明理由;如图(2)C点为线段AB上一点, 等边三角形ACM和等边三角形CB

图(1)中,C点为线段AB上一点,△ACM,△CBN是等边三角形,AN与BM相等吗?说明理由;如图(2)C点为线段AB上一点, 等边三角形ACM和等边三角形CB

题型:不详难度:来源:
图(1)中,C点为线段AB上一点,△ACM,△CBN是等边三角形,AN与BM相等吗?说明理由;如图(2)C点为线段AB上一点, 等边三角形ACM和等边三角形CBN在AB的异侧,此时AN与BM相等吗?说明理由;如图(3)C点为线段AB外一点,△ACM,△CBN是等边三角形,AN与BM相等吗?
说明理由
答案
(1)、(2)、(3)相等,证明见解析
解析
(1)相等.
证明如下:∵△ACM,△CBN是等边三角形,
∴AC=CM,CN=BC,
又∠ACN=∠MCN+60°∠MCB=∠MCN+60°,
∴∠ACN=∠MCB,
∴△ACN≌△MCB,∴AN=BM.
(2)相等.
证明如下:∵△ACM,△CBN是等边三角形,
∴AC=CM,CN=BC
又∠ACN=∠MCB,
∴△ACN≌△MCB,
∴AN=BM.
(3)相等.
证明如下:∵△ACM,△CBN是等边三角形,
∴AC=CM,CN=BC,
又∠ACN=∠MCN+60°∠MCB=∠MCN+60°,
∴∠ACN=∠MCB,
∴△ACN≌△MCB,
∴AN=BM.
题中三问均是对等边三角形性质的考查以及全等三角形的证明,由已知条件,利用等边三角形的性质可找出对应边及夹角相等,证明全等,即可得到线段相等
举一反三
如图,AC=BC,ACB=900,AE平分BAC,BFAE,交AC延长线于F,且垂足为E,则下列结论:①AD=BF; ②BF=AF; ③AC+CD=AB, ④AB=BF;⑤AD=2BE。其中正确的结论有              .(填写番号)
题型:不详难度:| 查看答案
在三角形的三个外角中,锐角最多只有(  )
.0个      .3个     .2个       .1个
题型:不详难度:| 查看答案
若等腰三角形的两边长是2cm和5cm,则此等腰三角形的周长是       cm.
题型:不详难度:| 查看答案
如图,则       度.

题型:不详难度:| 查看答案
如图所示,沿直线对折,△ABC与△ADC重合,则△ABC≌     ,AB的对应边是     ,BC的对应边是       ,∠BCA的对应角是       

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.