已知定点A(-1,0),F(2,0),定直线l:x=。不在x轴上的动点P与点F的距离是它到直线l的距离的2倍,设点P的轨迹为E,过点F的直线交E于B、C两点,直

已知定点A(-1,0),F(2,0),定直线l:x=。不在x轴上的动点P与点F的距离是它到直线l的距离的2倍,设点P的轨迹为E,过点F的直线交E于B、C两点,直

题型:四川省高考真题难度:来源:
已知定点A(-1,0),F(2,0),定直线l:x=。不在x轴上的动点P与点F的距离是它到直线l的距离的2倍,设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N,
(Ⅰ)求E的方程;
(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.
答案
解:(Ⅰ)设P(x,y),则
化简得
(Ⅱ)①当直线BC与x轴不垂直时,设BC的方程为y=k(x-2)(k≠0),
与双曲线方程联立消去y得(3-k2)x2+4k2x-(4k2+3)=0,
由题意知,3-k2≠0且△>0,
设B(x1,y1),C(x2,y2),则


因为x1,x2≠-1,所以直线AB的方程为
因此M点的坐标为
同理可得
因此

②当直线BC与x轴垂直时,其方程为x=2,则B(2,3),C(2,-3),
AB的方程为y=x+l,因此M点的坐标为
同理可得
因此
综上,,即FM⊥FN,
故以线段MN为直径的圆过点F。
举一反三
已知双曲线C:的离心率为,右准线方程为x=
(Ⅰ)求双曲线C的方程;
(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A、B,证明∠AOB的大小为定值。
题型:北京高考真题难度:| 查看答案
已知实轴长为2a,虚轴长为2b的双曲线S的焦点在x轴上,直线y=+x是双曲线S的一条渐近线,而且原点O,点A(a,0)和点B(0,-b)使等式成立,
(Ⅰ)求双曲线S的方程;
(Ⅱ)若双曲线S上存在两个点关于直线l:y=kx+4对称,求实数k的取值范围。
题型:云南省模拟题难度:| 查看答案
已知二面角α-l-β的平面角为θ,点P在二面角内,PA⊥α,PB⊥β,A,B为垂足,且PA=4,PB=5,设A,B到棱l的距离分别为x,y,当θ变化时,点(x,y)的轨迹方程是 [     ]
A.x2-y2=9(x≥0)
B.x2-y2=9(x≥0,y≥0)
C.y2-x2=9(y≥0)
D.y2-x2=9(x≥0,y≥0)
题型:0104 模拟题难度:| 查看答案

已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线的方程是x-2y=0,
(Ⅰ)求双曲线C的方程;
(Ⅱ)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围。

题型:天津高考真题难度:| 查看答案
已知双曲线的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为 [     ]
A.5x2-=1
B.
C.
D.5x2-=1
题型:0127 模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.