如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时

如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时

题型:不详难度:来源:
如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.
(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).

答案
1900米.
解析

试题分析:设EC=x,则在RT△BCE中,可表示出BE,在Rt△ACE中,可表示出AE,继而根据AB+BE=AE,可得出方程,解出即可得出答案.
试题解析:设EC=x,
在Rt△BCE中,tan∠EBC=
则BE=
在Rt△ACE中,tan∠EAC=
则AE=
∵AB+BE=AE,

解得:x=1800,
胡可的山高CD=DE-EC=3700-1800=1900(米).
答:这座山的高度是1900米.
举一反三
计算:-(5-π)0+4cos45°.
题型:不详难度:| 查看答案
在△ABC中,CA=CB,在△AED中, DA=DE,点D、E分别在CA、AB上.
(1)如图①,若∠ACB=∠ADE=90°,则CD与BE的数量关系是    
(2)若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图②所示的位置,则CD与BE的数量关系是    ;,
(3)若∠ACB=∠ADE=2α(0°< α < 90°),将△AED绕点A旋转至如图③所示的位置,探究线段CD与BE的数量关系,并加以证明(用含α的式子表示).

题型:不详难度:| 查看答案
甲、乙两船分别在相距120米的两平行航线上向东匀速行驶,小明站在甲船的船尾对着乙船拍照,此时他发现乙船的船尾在他们的西偏北30°方向,船头在他的西偏北45°方向.小明迅速用30秒时间走向船头,此时发现乙船船头在他的西偏北60°方向.已知甲船长20米,甲船的速度为600米/分.求乙船的长度和乙船的速度.(结果取整数)(参考数据: )

题型:不详难度:| 查看答案
如图,在Rt△ABC中,,D是边AB的中点,BE⊥CD,垂足为点E,己知AC=6,sinA=.(1) 求线段CD的长;(2)求cos∠DBE的值.

题型:不详难度:| 查看答案
如图,自来水公司的主管道从A小区向北偏东60°方向直线延伸,测绘员在A处测得要安装自来水的M小区在A小区北偏东30°方向,测绘员沿主管道测量出AC=200米,小区M位于C的北偏西60°方向,
(1)请你找出支管道连接点N,使得N到该小区铺设的管道最短.(在图中标出点N的位置)
(2)求出AN的长.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.