如图,PA、PB分别切⊙O于A、B,连接PO、AB相交于D,C是⊙O上一点,∠C=60°。(1)求∠APB的大小;(2)若PO=20cm,求△AOB的面积。

如图,PA、PB分别切⊙O于A、B,连接PO、AB相交于D,C是⊙O上一点,∠C=60°。(1)求∠APB的大小;(2)若PO=20cm,求△AOB的面积。

题型:不详难度:来源:
如图,PA、PB分别切⊙O于A、B,连接PO、AB相交于D,C是⊙O上一点,∠C=60°。
(1)求∠APB的大小;
(2)若PO=20cm,求△AOB的面积。
答案
解:(1)∵PA、PB分别切⊙O于A、B,∴OA⊥PA,OB⊥PB。∴∠PAO=∠PBO=90°。
∵∠C=60°,∴∠AOB=2∠C=2×60°=120°。
∴∠APB=360°-∠PAO-∠PBO-∠AOB=60°。
(2)∵PA、PB分别切⊙O于A、B,∴∠APO=∠APB=×60°=30°,PA=PB。
∴P在AB的垂直平分线上。
∵OA=OB,∴O在AB的垂直平分线上,即OP是AB的垂直平分线,
∴OD⊥AB,AD=BD=AB。
∵∠PAO=90°,∴∠AOP=60°。
在Rt△PAO中,AO=PO=×20=10,
在Rt△AOD中,AD=AO•sin60°=10×,OD=OA•cos60°=10×=5,
∴AB=2AD=
∴△AOB的面积为:AB•OD=(cm2)。
解析
(1)由PA、PB分别切⊙O于A、B,由切线的性质,即可得OA⊥PA,OB⊥PB,又由圆周角定理,求得∠AOB的度数,继而求得∠APB的大小。
(2)由切线长定理,可求得∠APO的度数,继而求得∠AOP的度数,易得PO是AB的垂直平分线,然后利用三角函数的性质,求得AD与OD的长,从而求得答案。
举一反三
在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF. 连接AF并延长交x轴的正半轴于点B,连接OF,设OD=t.

⑴ 求tan∠FOB的值;
⑵用含t的代数式表示△OAB的面积S;
⑶是否存在点C,使以BEF为顶点的三角形与△OFE相似,若存在,请求出所有满足要求的B点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,P是∠α的边OA上一点,且点P的坐标为,则sinα的值为_________.
题型:不详难度:| 查看答案
如图,已知某小区的两幢10层住宅楼间的距离为AC="30" m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3 m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α .

(1) 用含α的式子表示h(不必指出α的取值范围);
(2) 当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光 ?
题型:不详难度:| 查看答案
如图,AB是⊙O的直径,弦BC=9,∠BOC=50°,OE⊥AC,垂足为E.

(1)求OE的长.
(2)求劣弧AC的长(结果精确到0.1).
题型:不详难度:| 查看答案
如图,已知在Rt△ABC中,∠C=,BC=1,AC=2,则的值为(   )
A.B.
C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.