(7分)阅读材料,解答问题: 命题:如图,在锐角△ABC中,BC=a,CA=b,AB=c,ΔABC的外接圆半径为R, 则2R.
证明:连结CO并延长交⊙O于点D,连结DB,则∠D=∠A,因为CD是⊙O的直径,所以∠DBC=900,在Rt△DBC中,sinD=,所以sinA=,即,同理:, ∴ 2R. 请阅读前面所给的命题和证明后,完成下面(1)(2)两题: 小题1:(1)前面阅读材料中省略了“”的证明过程,请你把“”的证明过程补写出来. 小题2:(2)直接运用阅读材料中命题的结论解题:已知锐角△ABC中, BC=,CA=,∠A=600,求△ABC的外接圆半径 R及∠C. |