如图,线段AB、DC分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,从B点测得D点的仰角α为60°从A点测得D点的仰角β为30°,已知甲建筑物高AB=36米

如图,线段AB、DC分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,从B点测得D点的仰角α为60°从A点测得D点的仰角β为30°,已知甲建筑物高AB=36米

题型:同步题难度:来源:
如图,线段AB、DC分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,从B点测得D点的仰角α为60°从A点测得D点的仰角β为30°,已知甲建筑物高AB=36米.
(1)求乙建筑物的高DC;
(2)求甲、乙两建筑物之间的距离BC(结果精确到0.01米).
(参考数据:≈1.414,≈1.732)
答案
解:(1)过点A作AE⊥CD于点E.根据题意,得∠DBC=∠α=60°,∠DAE=∠β=30°,AE=BC,EC=AB=36.设DE=x,则DC=DE+EC=x+36.
在Rt△AED中,tan∠DAE=tan30°= 
∴AE= x,
∴BC=AE= x.
在Rt△DCB中,tan∠DBC=tan60°= ,
 = ,
∴3x=x+36, x=18,经检验x=18是原方程的解.
∴DC=54(米).
(2)∵BC=AE= x,x=18,
∴BC= ×18=18×1.732≈31.18(米).
举一反三
海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C处的距离.
题型:同步题难度:| 查看答案
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5度.

(1)求坡高CD;
(2)求斜坡新起点A与原起点B的距离(精确到0.1米).
题型:同步题难度:| 查看答案
在学习实践科学发展观的活动中,某单位在如图所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE,张明同学站在离办公楼的地面C处测得条幅顶端A的仰角为50°,测得条幅底端E的仰角为30度.
问张明同学是在离该单位办公楼水平距离多远的地方进行测量?(精确到整数米)
(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20,sin30°=0.50,cos30°≈0.87,tan30°≈0.58)
题型:同步题难度:| 查看答案
如图1是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB=20°)时最为合适,已知货车车厢底部到地面的距离AB=1.5m,木板超出车厢部分AD=0.5m,
请求出木板CD的长度?
(参考数据:sin20°≈0.3420,cos20°≈0.9397,精确到0.1m)
题型:同步题难度:| 查看答案
已知:,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.
(1)如图,当∠APB=45°时,求AB及PD的长;
(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.
题型:浙江省同步题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.