两圆的半径分别为2cm,3cm,圆心距为2cm,则这两个圆的位置关系是( )A.外切B.相交C.内切D.内含
题型:不详难度:来源:
两圆的半径分别为2cm,3cm,圆心距为2cm,则这两个圆的位置关系是( ) |
答案
B |
解析
试题分析:∵两个圆的半径分别是3cm和2cm,圆心距为2cm, 又∵3+2=5,3﹣2=1,1<2<5, ∴这两个圆的位置关系是相交. 故选B. |
举一反三
如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C′,则点B转过的路径长为( )
|
如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是( )
A.AE=BE B. = C.OE=DE D.∠DBC=90° |
如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于 .
|
如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A、D两点作⊙O(用尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)
|
如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED. (1)求证:BC是⊙O的切线; (2)已知AD=3,CD=2,求BC的长.
|
最新试题
热门考点