试题分析:连接OD,
∵DF为圆O的切线, ∴OD⊥DF, ∵△ABC为等边三角形, ∴AB=BC=AC,∠A=∠B=∠C=60°, ∵OD=OC, ∴△OCD为等边三角形, ∴∠CDO=∠A=60°,∠ABC=∠DOC=60°, ∴OD∥AB, 又O为BC的中点, ∴D为AC的中点,即OD为△ABC的中位线, ∴OD∥AB, ∴DF⊥AB, 在Rt△AFD中,∠ADF=30°,AF=2, ∴AD=4,即AC=8, ∴FB=AB-AF=8-2=6, 在Rt△BFG中,∠BFG=30°, ∴BG=3, 则根据勾股定理得:FG=3. 故选C. |