如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EG=EK.(1)求证

如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EG=EK.(1)求证

题型:不详难度:来源:
如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EG=EK.

(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为13,CH=12,AC∥EF,求OH和FG的长.
答案
(1)证明见解析;(2).
解析

试题分析:(1)连接OG,首先证明∠EGK=∠EKG,再证明∠HAK+∠KGE=90°,进而得到∠OGA+∠KGE=90°即GO⊥EF,进而证明EF是⊙O的切线;
(2)连接CO,利用勾股定理计算出HO的长,然后可得tan∠CAH=tan∠F=,再利用三角函数在Rt△OGF中计算出FG的长.
试题解析:(1)证明:连接OG,
∵弦CD⊥AB于点H,
∴∠AHK=90°,
∴∠HKA+∠KAH=90°,
∵EG=EK,
∴∠EGK=∠EKG,
∵∠HKA=∠GKE,
∴∠HAK+∠KGE=90°,
∵AO=GO,
∴∠OAG=∠OGA,
∴∠OGA+∠KGE=90°,
∴GO⊥EF,
∴EF是⊙O的切线;
(2)解:连接CO,在Rt△OHC中,
∵CO=13,CH=12,
∴HO=5,
∴AH=8,
∵AC∥EF,
∴∠CAH=∠F,
∴tan∠CAH=tan∠F= ,
在Rt△OGF中,∵GO=13,
∴FG=
考点: 1.切线的判定,2.解直角三角形.
举一反三
如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于
A.20° B.40° C.60°D.80°

题型:不详难度:| 查看答案
如图,AB为⊙O的直径,弦CD^AB,垂足为点E,连接OC,若OC=5,AE=2,则CD等于
A.3B.4C.6D.8

题型:不详难度:| 查看答案
若扇形的半径为9,圆心角为120°,则它的弧长为________________.
题型:不详难度:| 查看答案
如图,点A是半圆上一个三等分点,点B是的中点,点P是直径MN上一动点,若⊙O的半径为1,则AP+BP的最小值是               

题型:不详难度:| 查看答案
已知:如图,在⊙O中,弦交于点.求证:

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.