如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC的平行线交AB的延长线于点D.(1)当点P在什么位置时,DP是⊙O的切

如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC的平行线交AB的延长线于点D.(1)当点P在什么位置时,DP是⊙O的切

题型:不详难度:来源:
如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC的平行线交AB的延长线于点D.
(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;
(2)当DP为⊙O的切线时,求线段DP的长.

答案
解:(1)当点P是的中点时,DP是⊙O的切线。理由如下:
连接AP。
∵AB=AC,∴
又∵,∴。∴PA是⊙O的直径。
,∴∠1=∠2。
又∵AB=AC,∴PA⊥BC。
又∵DP∥BC,∴DP⊥PA。∴DP是⊙O的切线。
(2)连接OB,设PA交BC于点E。.

由垂径定理,得BE=BC=6。
在Rt△ABE中,由勾股定理,得:AE=
设⊙O的半径为r,则OE=8﹣r,
在Rt△OBE中,由勾股定理,得:r2=62+(8﹣r)2,解得r=
∵DP∥BC,∴∠ABE=∠D。
又∵∠1=∠1,∴△ABE∽△ADP,
,即,解得:
解析
圆心角、弧、弦的关系,圆周角定理,切线的判定,勾股定理,垂径定理,相似三角形的判定和性质。
【分析】(1)根据当点P是的中点时,得出,得出PA是⊙O的直径,再利用DP∥BC,得出DP⊥PA,问题得证。
(2)利用切线的性质,由勾股定理得出半径长,进而得出△ABE∽△ADP,即可得出DP的长。
举一反三
已知相交两圆的半径分别为4和7,则它们的圆心距可能是                    
A.2    B.3C.6      D.11

题型:不详难度:| 查看答案
⊙A的半径是2cm,⊙B的半径是5cm,AB=4cm,则两圆的位置关系是    
题型:不详难度:| 查看答案
如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD
(1)求证:∠CDE=2∠B
(2)若BD:AB=:2,求⊙O的半径及弦DF的长
题型:不详难度:| 查看答案
如图,在直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是
A.相离B.相交C.相切D.无法确定

题型:不详难度:| 查看答案
如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,交OC于点E,连结CD,OD.给出以下四个结论:①S△DEC=S△AEO;②AC∥OD;③线段OD是DE与DA的比例中项;④.其中结论正确的是
A. ①②③        B. ①②④        C. ②③       D. ②④ 
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.