(1)证明:∵四边形ABCE为圆O的内接四边形, ∴∠ABC=∠CED,∠DCE=∠BAE, 又AB=AC,∴∠ABC=∠ACB, ∴∠CED=∠ACB, 又∠AEB和∠ACB都为
| AB | 所对的圆周角, ∴∠AEB=∠ACB, ∴∠CED=∠AEB, ∵AB=AC,CD=AC, ∴AB=CD, 在△ABE和△CDE中, , ∴△ABE≌△CDE(AAS).
(2)∵△ABE≌△CDE, ∴AE=EC=6,ED=BE=9, 即=,且∠AEB=∠CED, ∴△AEF∽△DEC, ∴=. ∴EF==4. |