在△ABC中,分别以AB、BC为直径的⊙O1、⊙O2,交于另一点D.(1)证明:交点D必在AC上;(2)如图甲,当⊙O1与⊙O2半径之比为4:3,且DO2与⊙O

在△ABC中,分别以AB、BC为直径的⊙O1、⊙O2,交于另一点D.(1)证明:交点D必在AC上;(2)如图甲,当⊙O1与⊙O2半径之比为4:3,且DO2与⊙O

题型:不详难度:来源:
在△ABC中,分别以AB、BC为直径的⊙O1、⊙O2,交于另一点D.
(1)证明:交点D必在AC上;
(2)如图甲,当⊙O1与⊙O2半径之比为4:3,且DO2与⊙O1相切时,判断△ABC的形状,并求tan∠O2DB的值;
(3)如图乙,当⊙O1经过点O2,AB、DO2的延长线交于E,且BE=BD时,求∠A的度数.
答案
(1)证明:∵AB为⊙O1的直径,
∴∠ADB=90°,同理∠BDC=90°,
∴∠ADC=180°,
∴点D在AC上.

(2)如图甲,△ABC是以∠B为直角的直角三角形.理由如下:
连接O1D,O1O2
∵DO2是⊙O1的切线,O1D是半径,
∴∠O1DO2=90°,
∵O1D=O1B,O2D=O2B,O1O2公共,
∴△O1BO2≌△O1DO2
∴∠O1BO2=∠O1DO2=90°,
∴△ABC为直角三角形.
又∵BD⊥AC,
∴∠O2DB=∠O2BD=∠A,
∴tan∠O2DB=tan∠A=
BC
AB
=
3
4


(3)如图乙,连接O1O2,则AC=2O1O2=AB;
令∠O2BD=x,则∠O2BD=∠O2DB=x,
∵BD=BE,
∴∠E=x,
∴∠ABD=∠E+∠BDE=2x,∠ACB=∠ABC=3x;
∵BC为⊙O2直径,
∴∠DBC+∠C=4x=90°,
∴∠A=180°-6x=45°.
举一反三
如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是(  )
A.4B.8C.4


3
D.8


3

题型:不详难度:| 查看答案
如图,⊙Ol和⊙O2内切于点P,过点P的直线交⊙Ol于点D,交⊙O2于点E,DA与⊙O2相切,切点为C.
(1)求证:PC平分∠APD;
(2)求证:PD•PA=PC2+AC•DC;
(3)若PE=3,PA=6,求PC的长.
题型:不详难度:| 查看答案
如图,已知O为原点,点A的坐标为(4,3),⊙A的半径为2,过A作直线L平行于x轴,点P在直线L上运动.
(1)当点P在⊙A上时,请直接写出它的坐标;
(2)设点P的横坐标为6


2
,试判断直线OP与⊙A的位置关系,并说明理由.
题型:不详难度:| 查看答案
如图,在边长为2的等边三角形ABC中,以B为圆心,AB为半径作
AC
,在扇形BAC内作⊙O与AB、BC、
AC
都相切,则⊙O的周长等于(  )
A.
4
9
π
B.
2
3
π
C.
4
3
π
D.π

题型:不详难度:| 查看答案
如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH的中点,连接AE并延长交BD于F,直线CF交直线AB于点G.
(1)求证:点F是BD的中点;
(2)求证:CG是⊙O的切线.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.