如图,AB是⊙O的直径,AC是弦,点D是BC的中点,PD切⊙O于点D.(1)求证:DP⊥AP;(2)若PD=12,PC=8,求⊙O的半径R的长.

如图,AB是⊙O的直径,AC是弦,点D是BC的中点,PD切⊙O于点D.(1)求证:DP⊥AP;(2)若PD=12,PC=8,求⊙O的半径R的长.

题型:不详难度:来源:
如图,AB是⊙O的直径,AC是弦,点D是
BC
的中点,PD切⊙O于点D.
(1)求证:DP⊥AP;
(2)若PD=12,PC=8,求⊙O的半径R的长.
答案
(1)证明:连接BC、OD,相交于点E;
∵点D是
BC
的中点,
∴OD⊥BC,
∴∠CED=90°,
∵AB是⊙O的直径,
∵∠ACB=90°,
∵PD为⊙O的切线,
∴OD⊥PD,
∴∠PDE=90°
∴四边形PDEC为矩形,
∴DP⊥AP;

(2)由(1)可知四边形PDEC为矩形,
∴PD=CE=12,
∴BC=2CE=24;
∵PD2=PC•PA,
∴PA=
PD2
PC
=
122
8
=18,
∴AC=PA-PC=18-8=10;
∵AB2=AC2+BC2=102+242=676,
∴AB=26,
∴⊙O的半径R=13.
举一反三
如图,AB是⊙O的直径,C为AB延长线上的一点,CD交⊙O于点D,且∠A=∠C=30°.
(1)求证:CD是⊙O的切线;
(2)请判断线段AC是BC的多少倍,并说明理由.
题型:不详难度:| 查看答案
如图,PA是⊙O的切线,切点为A,PA=2


3
,∠APO=30°,则⊙O的半径长为______.
题型:不详难度:| 查看答案
如图,AB是⊙O的直径,BC是一条弦,连接OC并延长至点P,使PC=BC,∠BOC=60°.
(1)求证:PB是⊙O的切线;
(2)若⊙O的半径为1,且AB、PB的长是方程x2+bx+c=0的两根,求b、c的值.
题型:不详难度:| 查看答案
如图,BC为⊙O的直径,P为CB延长线上的一点,过P作⊙O的切线PA,A为切点,PA=4,PB=2,则⊙O的半径等于(  )
A.3B.4C.6D.8

题型:不详难度:| 查看答案
如图,O是已知线段AB上一点,以OB为半径的⊙O交线段AB于点C,以线段AO为直径的半圆交⊙O于点D,过点B作AB的垂线与AD的延长线交于点E.
(1)求证:AE切⊙O于点D;
(2)若AC=2,且AC、AD的长时关于x的方程x2-kx+4


5
=0的两根,求线段EB的长;
(3)当点O位于线段AB何处时,△ODC恰好是等边三角形?并说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.