如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,

如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,

题型:湖北省中考真题难度:来源:
如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.
(1)求证:CD是⊙O的切线;
(2)若AD=4,BC=9,求⊙O的半径R.

答案
(1)证明:过O点作OE⊥CD于点E,
∵AM切⊙O于点A,
∴OA⊥AD,
又∵DO平分∠ADC,
∴OE=OA,
∵OA为⊙O的半径,
∴CD是⊙O的切线.
(2)解:过点D作DF⊥BC于点F,
∴AM,BN分别切⊙O于点A,B,
∴AB⊥AD,AB⊥BC,
∴四边形ABFD是矩形,
∴AD=BF,AB=DF,
又∵AD=4,BC=9,
∴FC=9﹣4=5,
∴AM,BN,DC分别切⊙O于点A,B,E,
∴DA=DE,CB=CE,
∴DC=AD+BC=4+9=13,
在RT△DFC中,DC2=DF2+FC2
∴DF==12,
∴AB=12,
∴⊙O的半径R是6.
举一反三
如图,直线与x轴、y轴分别相交于点A、B,与正比例函数的图象相交于点C、D(点C在点D的左侧),⊙O是以CD长为半径的圆。CE∥x轴,DE∥y轴,CE、DE相交于点E。
(1)△CDE是           三角形;点C的坐标为            ,点D的坐标为            (用含有b的代数式表示)
(2)b为何值时,点E在⊙O上?
(3)随着b取值逐渐增大,直线与⊙O有哪些位置关系?求出相应b的取值范围。
题型:江苏中考真题难度:| 查看答案
已知⊙O的直径等于12cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为 [     ]

A.0
B.1
C.2
D.无法确定


题型:湖南省中考真题难度:| 查看答案
在平面直角坐标系xoy中,已知点P(3,0),⊙P是以点P为圆心,2为半径的圆。若一次函数y=kx+b的图象过点A(-1,0)且与⊙P相切,则k+b的值为(    )。
题型:江苏中考真题难度:| 查看答案
在平面直角坐标系xoy中,已知动点P在正比例函数y=x的图象上,点P的横坐标为m(m>0)。以点P为圆心,m 为半径的圆交x轴于A、B两点(点A在点B的左侧),交y轴于C、D两点(D点在点C的上方)。点E为平行四边形DOPE的顶点(如图)。
(1)写出点B、E的坐标(用含m的代数式表示);
(2)连接DB、BE,设△BDE的外接圆交y轴于点Q(点Q异于点D),连接EQ、BQ。试问线段BQ与线段EQ的长是否相等?为什么?
(3)连接BC,求∠DBC-∠DBE的度数。
题型:江苏中考真题难度:| 查看答案
如图AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)若AB=2,∠P=30°,求AP的长;
(2)若D为AP的中点,求证:直线CD是⊙O的切线
题型:四川省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.