如图,有一个△ABC,三边长为AC=6,BC=8,AB=10,沿AD折叠,使点C落在AB边上的点E处.(1)试判断△ABC的形状,并说明理由.(2)求线段CD的

如图,有一个△ABC,三边长为AC=6,BC=8,AB=10,沿AD折叠,使点C落在AB边上的点E处.(1)试判断△ABC的形状,并说明理由.(2)求线段CD的

题型:不详难度:来源:
如图,有一个△ABC,三边长为AC=6,BC=8,AB=10,沿AD折叠,使点C落在AB边上的点E处.
(1)试判断△ABC的形状,并说明理由.
(2)求线段CD的长.
答案
(1)△ABC是直角三角形,理由如下:
在△ABC中,∵62+82=102
∴AC2+BC2=AB2
∴△ABC是直角三角形,∠C=90°;

(2)∵△ADE是△ADC沿直线AD翻折而成,
∴∠C=∠DEB=90°,CD=DE,AC=AE=6,
设CD=x,则DE=x,BD=8-x,
在Rt△BDE中,∵DE2+BE2=BD2
∴x2+42=(8-x)2
∴x2+16=64-16x+x2
∴x=3,即CD长为3.
举一反三
A,B两村在河边的同侧,以河边为x轴建立直角坐标系如图,则A,B两村对应的坐标分别为A(0,2),B(4,1),现要在河边P处修一个水泵站,分别向A,B两村送水,点P应选在何处,才可使所用的水管最短?求出所需水管的长度.
题型:不详难度:| 查看答案
如图,矩形纸片ABCD中AB=6cm,BC=10cm,小明同学先折出矩形纸片ABCD的对角线AC,再分别把△ABC、△ADC沿对角线AC翻折交AD、BC于点F、E.
(1)判断小明所折出的四边形AECF的形状,并说明理由;
(2)求四边形AECF的面积.
题型:不详难度:| 查看答案
在河道L旁有两个村庄A、B,两村相距1000米,且A村与河道的距离为100米,B村到河道距离为700米,若要在河道上修建一个供水站,要使它到两村的距离之和最短,则最短距离为(  )
A.800


2
B.1000C.800D.800


2
或1000
题型:不详难度:| 查看答案
如图,矩形OABC的长OA=


3
,宽OC=1,将△AOC沿AC翻折得△APC.
(1)填空:∠PCB=______度,P点坐标为______;
(2)若P、A两点在抛物线y=-
4
3
x2+bx+c
上,求b,c的值;
(3)若直线y=kx+m平行于CP,且于(2)中的抛物线有且只有一个交点,求k,m的值;
(4)在(2)中抛物线CP段(不包括C,P点)上,是否存在一点M,使得四边形MCAP的面积最大?若存在求此时M的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
将一张边长分别为8、6的矩形纸片ABCD折叠,使点C与点A重合,则折痕的长为(  )
A.6B.6.5C.7.5D.10
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.