如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC以O为旋转中心,将△A1B1C1逆时针旋转90°得△A1B1C1,画出旋转后的图

如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC以O为旋转中心,将△A1B1C1逆时针旋转90°得△A1B1C1,画出旋转后的图

题型:不详难度:来源:
如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC以O为旋转中心,将△A1B1C1逆时针旋转90°得△A1B1C1,画出旋转后的图形,并写出B1点坐标.
答案
如图所示:
B1(-1,-4).
举一反三
已知,DE是等腰直角三角形ABC的中位线,将△BED沿AB翻折使E落在F处,如图①,再将△ABC绕B点逆时针旋转α°(0<α<90°),连接AF,DC,如图②.
(1)观察猜想,∠AFB与∠BDC大小关系______(直接出正确结论);
(2)当α=30时,试判断△BDC的形状;
(3)在(2)的条件下,若DG=1,求DF的长.
题型:不详难度:| 查看答案
在正方形网格中,建立如图所示的平面直角坐标系xoy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1,B1,C1的坐标;
(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C,并写出点A2,B2的坐标.
题型:不详难度:| 查看答案
已知:直角△ABC中,∠ACB=90°,AC=4,BC=2.
(1)如图①,将直角△ABC按顺时针方向绕点C旋转到△A1B1C位置,试求出点A所经过路径的长度(精确到0.1);
(2)如图②,将图①中△A1B1C向左平移到△A2B2C1位置,若点B2落在AB上,试求出平移的距离.
题型:不详难度:| 查看答案
如图所示,网格中每个小正方形的边长为1.请你认真观察图中的三个网格中阴影部分构成的图案.解答下列问题:
(1)这三个图案都具有以下共同特征:
①都是______对称图形;②阴影部分面积都是______;③都不是______对称图形.
(2)请你在备用图中设计出一个具备上述特征的图案(图中已给出除外)
题型:不详难度:| 查看答案
请阅读下列材料:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=


3
,PC=1.求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′PB是等边三角形(可证),而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.进而把AB放在Rt△APB(可证得)中,用勾股定理求出等边△ABC的边长为


7
.问题得到解决.
[思路分析]首先仔细阅读材料,问题中小明的做法总结起来就是通过旋转固定的角度将已知条件放在同一个(组)图形中进行研究.旋转60度以后BP就成了BP′,PC成了P′A,借助等量关系BP′=PP′,于是△APP′就可以计算了.
解决问题:
请你参考李明同学旋转的思路,探究并解决下列问题:
如图3,在正方形ABCD内有一点P,且PA=


5
,BP=


2
,PC=1.求∠BPC度数的大小和正方形ABCD的边长.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.