(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC, ∴CO=CD,∠OCD=60°, ∴△COD是等边三角形. (2)答:当α=150°时,△AOD是直角三角形. 理由是:∵△BOC≌△ADC, ∴∠ADC=∠BOC=150°, 又∵△COD是等边三角形, ∴∠ODC=60°, ∴∠ADO=∠ADC﹣∠ODC=90°, 即△AOD是直角三角形. (3)解:①要使AO=AD,需∠AOD=∠ADO, ∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°, ∴190°﹣α=α﹣60°, ∴α=125°; ②要使OA=OD,需∠OAD=∠ADO. ∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°, ∴α﹣60°=50°, ∴α=110°; ③要使OD=AD,需∠OAD=∠AOD. ∵∠OAD=360°﹣110°﹣60°﹣α=190°﹣α, ∠AOD==120°﹣, ∴190°﹣α=120°﹣, 解得α=140°. 综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形. |