将凸五边形ABCDE的5条边和5条对角线染色,且满足任意有公共顶点的两条线段不同色,求颜色数目的最小值.
题型:不详难度:来源:
将凸五边形ABCDE的5条边和5条对角线染色,且满足任意有公共顶点的两条线段不同色,求颜色数目的最小值. |
答案
由于顶点A是4条线段AB,AC,AD,AE的公共点,因此至少需要4种颜色. 若只有4种颜色,不妨设为红、黄、蓝、绿,则每个顶点引出的4条线段的颜色包含红、黄、蓝、绿各一种,因此,红色的线段共有条,矛盾.所以,至少需要5种颜色. 下面的例子说明5种颜色可以将这10条线段染为满足条件的颜色.将AB,CE染为1号颜色;将BC,DA染为2号颜色;将CD,EB染为3号颜色;将DE,AC染为4号颜色; 将EA,BD染为5号颜色,则任意有公共顶点的两条线段不同色. 综上所述,颜色数目的最小值为5. |
举一反三
阅读并解答 看下面的问题: 从甲地到乙地,可以乘火车,也可以乘汽车.一天中,火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有3+2=5种不同的走法. 一般地,有如下原理: 分类计数原理:完成一件事,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法…在第n类办法中有mn种不同的方法.那么完成这件事共有N=m1+m2+…+mn种不同的方法. 再看下面的问题: 从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地.一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法? 这个问题与前一问题不同.在前一问题中,采用乘火车或乘汽车中的任何一种方式,都可以从甲地到乙地.而在这个问题中,必须经过先乘火车、后乘汽车两个步骤,才能从甲地到达乙地. 这里,因为乘火车有3种走法,乘汽车有2种走法,所以乘一次火车再接乘一次汽车从甲地到乙地,共有 3×2=6种不同的走法. 一般地,有如下原理: 分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法…做第n步有mn种不同的方法.那么完成这件事共有 N=m1×m2×…×mn种不同的方法. 例:书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书. (1)从书架上任取1本书,有多少种不同的取法? (2)从书架的第1、2、3层各取1本书,有多少种不同的取法? (1)从书架上任取1本书,有3类办法:第1类办法是从第1层取1本计算机书,有4种方法;第2类办法是从第2层取1本文艺书,有3种方法;第3类办法是从第3层取1本体育书,有2种方法.根据分类计数原理,不同取法的种数是 N=m1+m2+m3=4+3+2=9 答:从书架上任取1本书,有9种不同的取法. (2)从书架的第1、2、3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层取1本体育书,有2种取法.根据分步计数原理,从书架的第1、2、3层各取1本书,不同取法的种数是N=m1×m2×m3=4×3×2=24 答:从书架的第1、2、3层各取1本书,有24种不同的取法. 完成下列填空: (1)从5位同学中产生1名组长,1名副组长有______种不同的选法. (2)如图,一条电路在从A处到B处接通时,可以有______条不同的路线. (3)用数字0、1、2、3、4、5组成______个没有重复数字的六位奇数. (4)一种汽车牌照由2个英文字母后接4个数字组成,且2个英文字母不能相同,则不同牌照号码
的个数是______. |
(1)用1×1,2×2,3×3三种型号的正方形地板砖铺设23×23的正方形地面,请你设计一种辅设方案,使得1×1的地板砖只用一块. (2)请你证明:只用2×2,3×3两种型号的地板砖,无论如何铺设都不能铺满23×23的正方形地面而不留空隙. |
某旅游团92人在快餐店就餐,该店备有9种莱,每份单价分别为1、2、3、4、5、6、7、8、9(元).旅游团领队交代:每人可选不同的菜,但金额都正好是10元,且每一种菜最多只能买一份.这样,该团成员中,购菜品种完全相同的至少有( ) |
公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如图所示.由于其中三支应该亮的荧光管不亮了,某公交线路号显示成了“351”路,则该公交线路号可能
有______种. |
如图,全部矩形(长方形)的总数为( ) |
最新试题
热门考点