解:(1)DE= AB=5.故DE=5.
(2)设A1B1=x,则A2B2=2x.
∵A1,A2是AC的三等分点, B1,B2是BC的三等分点,
故由梯形中位线定理,有x+10=4x,
解得x= .这时A1B1+A2B2=10.
故A1B1+A2B2=10.
(3)同理可求出A1B1+A2B2+A3B3=15. A1B1+A2B2+A3B3+A4B4=20,…
从而A1B1+A2B2+…+A10B10=50.
故A1B1+A2B2+…+A10B10=50.
© 2017-2019 超级试练试题库,All Rights Reserved.