对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).
题型:不详难度:来源:
对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=( )A.(5,-9) | B.(-9,-5) | C.(5,9) | D.(9,5) |
|
答案
D |
解析
根据两种变换的规则,先计算f(5,-9)=(5,9),再计算g(5,9)即可. 解:g(f(5,-9))=g(5,9)=(9,5). 故选D. |
举一反三
在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为( ) |
如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是 .
|
点P(4,-5)关于原点对称的点的坐标是A.(4,5) | B.(4,-5) | C.(-4,5) | D.(-4,-5) |
|
如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为
A.a=b | B.2a-b=1 | C.2a+b=-1 | D.2a+b="1" |
|
如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,3),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.点B的横坐标为3n(n为正整数),当n=20时,则m= .
|
最新试题
热门考点