意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和、现以这组数中
题型:期中题难度:来源:
意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和、现以这组数中的各个数作为正方形的边长值构造如下正方形:再分别依次从左到右取2个、3个、4个、5个…正方形拼成如下长方形并记为①、②、③、④、…相应长方形的周长如下表所示:序号 ①②③④… 周长 610 x y …仔细观察图形,上表中的x= ,y= .若按此规律继续作长方形,则序号为⑧的长方形周长是 . |
|
答案
解:由分析知:第1个长方形的周长为6=(1+2)×2; 第2个长方形的周长为10=(2+3)×2; 第3个长方形的周长为16=(3+5)×2; 第4个长方形的周长为26=(5+8)×2; 第5个长方形的周长为42=(8+13)×2; 第6个长方形的周长为68=(13+21)×2; 第7个长方形的周长为110=(21+34)×2; 第8个长方形的周长为178=(34+55)×2. |
举一反三
由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=60时,计算s的值为 |
|
[ ] |
A.220 B.236 C.240 D.216 |
如图,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n的等式表示第n个正方形点阵中的规律( ). |
|
将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第10个图形圆的个数为 |
|
[ ] |
A.114 B.104 C.85 D.76 |
如图,将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,…,请你根据以上操作方法得到的正方形的个数的规律完成各题. (1)将下表填写完整; |
|
(2)an=_______(用含n的代数式表示); (3)按照上述方法,能否得到2009个正方形?如果能,请求出n;如果不能,请简述理由. |
|
用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案: |
|
(1)第4个图案有白色地面砖_________; (2)第n个图案有白色地面砖_________. |
最新试题
热门考点