f(n)=cos(2nπ2+π4),则f(1)+f(2)+f(3)+…+f(2012)=______.

f(n)=cos(2nπ2+π4),则f(1)+f(2)+f(3)+…+f(2012)=______.

题型:填空题难度:一般来源:不详
f(n)=cos(
2nπ
2
+
π
4
)
,则f(1)+f(2)+f(3)+…+f(2012)=______.
答案
∵f(n)=cos(
2nπ
2
+
π
4
)=cos(nπ+
π
4
),
∴f(1)+f(2)=cos(π+
π
4
)+cos(2π+
π
4
)=0,
同理可得,f(3)+f(4)=…=f(2011)+f(2012)=0,
∴f(1)+f(2)+f(3)+…+f(2012)=0.
故答案为:0
举一反三
已知向量


a


b
满足|


a
|=3|


b
|≠0,且关于x的函数f(x)=
1
2
x3+
1
2
|


a
|x2+


a


b
x在R上单调递增,则


a


b
的夹角的取值范围是(  )
A.[0,
π
2
B.[0,
π
3
]
C.(
π
3
π
2
]
D.(
π
3
3
]
题型:单选题难度:简单| 查看答案
定义在(0,1)的函数f(x),对于任意x1,x2∈(0,1)(x1≠x2),恒有
f(x1)-f(x2)
x1-x2
<0
.若A、B为锐角三角形ABC的两内角,则有(  )
A.f(sinA)>f(cosB)B.f(sinA)<f(cosB)
C.f(sinA)<f(sinB)D.f(cosA)<f(sinB)
题型:单选题难度:简单| 查看答案
已知函数f(x)=





(a-2)x-1,x≤1
logax
x>1
若f(x)在(-∞,+∞)上单调递增,则实数a的取值范围为(  )
A.(1,2)B.(2,3)C.(2,3]D.(2,+∞)
题型:单选题难度:一般| 查看答案
已知f(x)=|x-4|+|x+6|的最小值为n,则二项式(x2+
2


x
)n
展开式中常数项是(  )
A.第10项B.第9项C.第8项D.第7项
题型:单选题难度:一般| 查看答案
定义在R上的函数y=f(x)满足f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2011)=______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.