定义在R上的函数f(x)满足f(x)=21-x x≤0f(x-1)-f(x-2),x>0.则f(-1)=______,f(33)=______.

定义在R上的函数f(x)满足f(x)=21-x x≤0f(x-1)-f(x-2),x>0.则f(-1)=______,f(33)=______.

题型:填空题难度:一般来源:不详
定义在R上的函数f(x)满足f(x)=





21-x x≤0
f(x-1)-f(x-2),x>0.
则f(-1)=______,f(33)=______.
答案
由于函数f(x)满足f(x)=





21-x x≤0
f(x-1)-f(x-2),x>0.
 则f(-1)=21+1=4,
当 x>0 时,f(x)=f(x-1)-f(x-2)=f(x-2)-f(x-3)-f(x-2)=-f(x-3),(x>1),
∴f(x)=f(x-6),故f(x)是周期等于6的函数.
f(33)=f(3)=f(-3)=21+3=16,
故答案为4,16.
举一反三
定义f[a,b]=
1
2
(|a-b|+a+b)
.若函数g(x)=x2-1,h(x)=x-1,则函数f[g(x),h(x)]的最小值是______.
题型:填空题难度:一般| 查看答案
在实数的原有运算法则中,我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=a,当a<b时,a⊕b=b2.已知函数f(x)=(2⊕x)•x-(m⊕x)(m<2),若对任意x∈[-3,2],f(x)≥-5恒成立,则实数m的取值范围是______(“•”“-”仍为通常的乘法与减法)
题型:填空题难度:简单| 查看答案
定义:若存在常数k,使得对定义域D内的任意两个不同的实数x1,x2,,均有:|f(x1)-f(x2)|≥k|x1-x2|成立,则称f(x)在D上满足利普希茨(Lipschitz)条件.对于函数f(x)=lnx+
1
2
x2
在区间(0,+∞)满足利普希茨条件,则常数k的最大值为______.
题型:填空题难度:简单| 查看答案
已知函数f(x)定义在正整数集上,且对于任意的正整数x,都有f(x+2)=2f(x+1)-f(x),且f(1)=2,f(3)=6,则f(2009)=______.
题型:填空题难度:简单| 查看答案
设f(x)是[0,+∞)上的增函数,g(x)=f(|x|),则g(lgx)<g(1)的解集是______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.