已知函数f(x)=log21+x1-x.(Ⅰ)求函数f(x)的定义域;(Ⅱ)证明函数f(x)为奇函数;(Ⅲ)判断并证明函数的单调性.

已知函数f(x)=log21+x1-x.(Ⅰ)求函数f(x)的定义域;(Ⅱ)证明函数f(x)为奇函数;(Ⅲ)判断并证明函数的单调性.

题型:解答题难度:一般来源:不详
已知函数f(x)=log2
1+x
1-x

(Ⅰ)求函数f(x)的定义域;
(Ⅱ)证明函数f(x)为奇函数;
(Ⅲ)判断并证明函数的单调性.
答案
(Ⅰ)由
1+x
1-x
>0
,可得





1+x>0
1-x>0





1+x<0
1-x<0.

可得-1<x<1.
即函数f(x)的定义域为(-1,1).              …(4分)
(Ⅱ)由f(-x)=log2
1-x
1+x
=-log2
1+x
1-x
=-f(x)

所以函数f(x)为奇函数.                   …(8分)
(Ⅲ)任取x1,x2∈(-1,1),且x1<x2,则f(x1)-f(x2)=log2
1+x1
1-x1
-log2
1+x2
1-x2

=log2
(1+x1)(1-x2)
(1-x1)(1+x2)

=log2
1+x1-x2+x1x2
1-x1+x2+x1x2

由x1,x2∈(-1,1),且x1<x2
可知0<1+x1-x2+x1x2<1-x1+x2+x1x2
所以
1+x1-x2+x1x2
1-x1+x2+x1x2
<1

可得log2
1+x1-x2+x1x2
1-x1+x2+x1x2
<0

即f(x1)<f(x2),
所以函数f(x)在(-1,1)为增函数.                …(12分)
举一反三
函数f(x)=2x+3x(-1≤x≤2)的最大值是______.
题型:填空题难度:简单| 查看答案
已知f(x)在R上是奇函数,且f(4-x)=-f(x),当x∈(0,2)时,f(x)=log2(x2+15),则f(7)=______.
题型:填空题难度:一般| 查看答案
已知定义域为R(实数集)的函数,f(x)中,f(0)=1
且当n-1≤x<n(n∈Z)时,f(x)=(x-n)•f(n-1)+f(n)
(Ⅰ)求f(2)的值及当x∈[3,4)时,f(x)的表达式;
(Ⅱ)判断函数f(x)的单调性,并说明理由;
(Ⅲ)“定义:设g(x)为定义在D上的函数,若存在正数M,对任意x∈D都有|g(x)|≤M,则称函数g(x)为D上有界函数;否则,称函数g(x)为D上无界函数.”试证明f(x)为R上无界函数.
题型:解答题难度:一般| 查看答案
若函数y=bx+2(b为常数),为单调递增函数,则b值可为(  )
A.2B.lg
1
2
C.0D.-3
题型:单选题难度:简单| 查看答案
已知函数f(x)=
x+1
2-x
,x∈[3,5]

(1)判断函数f(x)在[3,5]上的单调性,并证明;
(2)求函数f(x)=
x+1
2-x
,x∈[3,5]
的最大值和最小值.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.