已知函数f(x)=x-2m2+m+3(m∈z)为偶函数,且以f(2011)<f(2012).(1)求m的值,并确定f(x)的解析式;(2)若g(x)=loga[

已知函数f(x)=x-2m2+m+3(m∈z)为偶函数,且以f(2011)<f(2012).(1)求m的值,并确定f(x)的解析式;(2)若g(x)=loga[

题型:解答题难度:一般来源:不详
已知函数f(x)=x-2m2+m+3(m∈z)为偶函数,且以f(2011)<f(2012).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0,a≠1)在区间[2,3]上为增函数,求实数a的取值范围.
答案
(1)由题意得:-2m2+m+3是偶数且-2m2+m+3<0,
∴-1<m<
3
2
,且m∈Z,∴m=0或1,
当m=0时,-2m2+m+3=3为奇数,不合,当m=1时,-2m2+m+3=2为偶数,
∴m的值为1,f(x)=x2
(2)g(x)=loga[f(x)-ax]=loga(x2-ax),设t=x2-ax,
当a>1时,由于g(x)=logat是增函数,故只须函数t=x2-ax在[2,3]是增函数,且函数t大于0,





a
2
≤2
4-2a>0
,解得1<a<2.
当 1>a>0时,由题意可得 函数t=x2-ax在[2,3]应是减函数,且函数t大于0,





a
2
≥3
9-3a>0
,此时无解
综上,实数a的取值范围是(1,2).
举一反三
函数f(x)=(
1
2
|x|为(  )
A.奇函数且在(-∞,0)上是减函数
B.奇函数且在(-∞,0)上是增函数
C.偶函数且在(-∞,0)上是减函数
D.偶函数且在(-∞,0)上是增函数
题型:单选题难度:一般| 查看答案
如果函数y=f(x)图象上任意一点的坐标(x,y)都满足方程 lg(x+y)=lgx+lgy,那么正确的选项是(  )
A.y=f(x)是区间(0,+∞)上的减函数,且x+y≤4
B.y=f(x)是区间(1,+∞)上的增函数,且x+y≥4
C.y=f(x)是区间(1,+∞)上的减函数,且x+y≥4
D.y=f(x)是区间(1,+∞)上的减函数,且x+y≤4
题型:单选题难度:一般| 查看答案
已知函数y=|x|+1,y=


x2-2x+2+t
y=
1
2
(x+
1-t
x
)
(x>0)的最小值恰好是方程x3+ax2+bx+c=0的三个根,其中0<t<1.
(Ⅰ)求证:a2=2b+3;
(Ⅱ)设(x1,M),(x2,N)是函数f(x)=x3+ax2+bx+c的两个极值点.
①若|x1-x2|=
2
3
,求函数f(x)的解析式;
②求|M-N|的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=





log2x, x>0
2x,   x<0
f(
1
4
)+f(-2)
=______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=x2+bx+1是R上的偶函数,则实数b=______;不等式f(x-1)<x的解集为______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.