设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能
题型:填空题难度:简单来源:镇江一模
设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能成为三角形的三条边长,那么M的最小值为______. |
答案
不妨设c为直角边,则M<a<c,M<b<c ∴ab>M2 由题意可得, ∴ ∵a2+b2≥2ab>2c ∴c2>2c即c>2 ∴ab>2 ∴M2≥2 ∴M≥ 故答案为: |
举一反三
下列函数在其定义域内既是奇函数又是增函数的是( ) A.y=x(x∈(0,+∞)) | B.y=3x(x∈R) | C.y=x(x∈R) | D.y=lg|x|(x≠0) |
|
设Sn=1+2+3+…+n,n∈N*,则函数f(n)=的最大值为______. |
定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得=C,则称函数f(x)在D上的几何平均数为C.已知f(x)=x,x∈[2,4],则函数f(x)=x在[2,4]上的几何平均数为( ) |
已知f(x5)=lgx,则f(2)=______. |
已知点A(x1,x12)、B(x2,x22)是函数y=x2的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论>()2成立.运用类比思想方法可知,若点A(x1,lgx1)、B(x2,lgx2)是函数y=lgx(x∈R+)的图象上的不同两点,则类似地有______成立. |
最新试题
热门考点