已知函数.(1)写出f(x)的单调区间;(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说

已知函数.(1)写出f(x)的单调区间;(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说

题型:解答题难度:一般来源:期末题
已知函数
(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.
答案
 解:(1)易知   即单调减区间为
单调增区间为
(2)因为的定义域与值域均为[a,b]
①当时,f(x)在区间[a,b]上递增所以
②当时,f(x)在递减,在上递增
值域为[a,b],即a=0,与题矛盾;
③当时,f(x)在[a,b]上递减
所以
综上所述,
举一反三
已知函数f(x)满足f(logax)=(x﹣x﹣1),其中a>0,a≠1
(1)对于函数f(x),当x∈(﹣1,1)时,f(1﹣m)+f(1﹣m2)<0,求实数m的集合;
(2)当x∈(﹣∞,2)时,f(x﹣4)的值恒为负数,求a的取值范围
题型:解答题难度:一般| 查看答案
一化工厂因排污趋向严重,2011年1月决定着手整治.经调研,该厂第一个月的污染度为60,整治后前四个月的污染度如下表;
污染度为0后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:f(x)=20|x﹣4|(x≥1),g(x)=
h(x)=30|log2x﹣2|(x≥1),其中x表示月数,f(x),g(x),h(x)分别表示污染度.(参考数据:lg2=0.3010,lg3=0.4771)
(Ⅰ)问选用哪个函数模拟比较合理,并说明理由;
(Ⅱ)如果环保部门要求该厂每月的排污度均不能超过60,若以比较合理的模拟函数预测,该厂最晚在何时开始进行再次整治?
题型:解答题难度:一般| 查看答案
已知函数
(1)求证:函数f(x)在(﹣∞,0]上是增函数.
(2)求函数在[﹣3,2]上的最大值与最小值.
题型:解答题难度:一般| 查看答案
设定义在R上的函数f(x)满足f(x)*f(x+2)=13,若f(1)=2,则f(99)=[     ]
A.13
B.2
C.
D.
题型:单选题难度:一般| 查看答案
某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件),已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数)。
(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案。
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.