已知函数f(x)=x2+(lga-2)x+lgb满足f(1)=0,(1)求a+b的最小值及此时a与b的值;(2)对于任意x∈R,恒有f(x)≥2x-6成立.求a

已知函数f(x)=x2+(lga-2)x+lgb满足f(1)=0,(1)求a+b的最小值及此时a与b的值;(2)对于任意x∈R,恒有f(x)≥2x-6成立.求a

题型:解答题难度:一般来源:不详
已知函数f(x)=x2+(lga-2)x+lgb满足f(1)=0,
(1)求a+b的最小值及此时a与b的值;
(2)对于任意x∈R,恒有f(x)≥2x-6成立.求a的取值范围.
答案
(1)由f(1)=lga+lgb-1=0可知:
lga+lgb=1,
即lgab=1,
∴ab=10且a,b>0.
∴a+b≥2


ab
=2


10
,当且仅当a=b=


10
时取等号.
即当a=b=


10
时,a+b有最小值2


10

(2)又f(x)≥2x-6对x∈R恒成立,
即x2+(lga-4)x+lgb+6≥0恒成立,
即x2+(lga-4)x+7-lga≥0对x∈R恒成立,
故△=(lga-4)2-4(7-lga)=lg2a-4lga-12≤0,
解得:-2≤lga≤6,
1
100
≤a≤106
举一反三
已知函数f(x)=x2+bx+c(b,c∈R),若b、c满足c≥
b2
4
+1
,且f(c)-f(b)≤M(c2-b2)恒成立,则M的最小值为______.
题型:填空题难度:一般| 查看答案
已知函数F(x)=ex满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,若∀x∈[1,2]使得不等式g(2x)-ah(x)≥0恒成立,则实数a的取值范围是(  )
A.(-∞,2


2
)
B.(-∞,2


2
]
C.(0,2


2
]
D.(2


2
,+∞)
题型:单选题难度:一般| 查看答案
已知函数f(x)=ax+lnx,a∈R.
(1)讨论y=f(x)的单调性;(2)若定义在区间D上的函数y=g(x)对于区间D上的任意两个值x1、x2总有不等式
1
2
[g(x1)+g(x2)]≥g(
x1+x2
2
)
成立,则称函数y=g(x)为区间D上的“凹函数”.
试证明:当a=-1时,g(x)=|f(x)|+
1
x
为“凹函数”.
题型:解答题难度:一般| 查看答案
下列命题为真命题的是(  )
A.f(x)在x=x0处存在极限,则f(x)在x=x0连续
B.f(x)在x=x0处无定义,则f(x)在x=x0无极限
C.f(x)在x=x0处连续,则f(x)在x=x0存在极限
D.f(x)在x=x0处连续,则f(x)在x=x0可导
题型:单选题难度:简单| 查看答案
已知函数f(x)=
ax+b
x2+1
在点M(1,f(1))
处的切线方程为x-y-1=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)=lnx,证明:g(x)≥f(x)对x∈[1,+∞)恒成立.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.