设函数f(x)=log2(1+x1-ax)(a∈R),若f(-13)=-1.(1)求f(x)解析式并判断其奇偶性;(2)当x∈[-1,0)时,求f(3x)的值域

设函数f(x)=log2(1+x1-ax)(a∈R),若f(-13)=-1.(1)求f(x)解析式并判断其奇偶性;(2)当x∈[-1,0)时,求f(3x)的值域

题型:解答题难度:一般来源:不详
设函数f(x)=log2(
1+x
1-ax
)
(a∈R),若f(-
1
3
)=-1

(1)求f(x)解析式并判断其奇偶性;
(2)当x∈[-1,0)时,求f(3x)的值域;
(3)g(x)=log


2
1+x
k
,若x∈[
1
2
2
3
]
时,f(x)≤g(x)有解,求实数k取值集合.
答案
(1)由于f(-
1
3
)=log2
1-
1
3
1+
a
3
=-1
,∴
2
3
1+
a
3
=
1
2
,即
4
3
=1+
a
3
,解得a=1,
f(x)=log2
1+x
1-x

再由
1+x
1-x
>0,求得-1<x<1
,∴定义域为(-1,1),定义域关于原点对称.
再根据f(-x)=log2
1-x
1+x
=log2(
1+x
1-x
)-1=-log2
1+x
1-x
=-f(x)
∴f(x)为奇函数.-----(3分)
(2)f(x)=log2(-1-
2
x-1
)
,∴f(3x)=log2(-1-
2
3x-1
)

∵-1≤x<0,∴-
2
3
≤3x-1<0,∴
2
3x-1
≤-3,即-
2
3x-1
≥3,
-1-
2
3x-1
≥2
,∴log2(-1-
2
3x-1
)≥log22=1

∴值域为[1,+∞).-----(7分)
(3)∵log2
1+x
1-x
≤log


2
1+x
k
=2log2
1+x
k
=log2(
1+x
k
)2
,∴
1+x
1-x
≤(
1+x
k
)2

1
2
≤x≤
2
3
,∴x+1>0.-------(9分)
令 h(x)=1-x2,显然h(x)在[
1
2
3
2
]上是减函数,∴h(x)max=h(
1
2
)
=
3
4

∴只需k2
3
4
.又由g(x)定义域知k>0,∴0<k≤


3
2
,即k的范围为 (0,


3
2
).-----(13分)
举一反三
已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1.若对任意a,b∈[-1,1],a+b≠0都有
f(a)+f(b)
a+b
>0

(1)判断函数f(x)的单调性,并说明理由;
(2)解不等式f(x-
1
2
)+f(x-
1
4
)<0

(3)若不等式f(x)+(2a-1)t-2≤0对所有x∈[-1,1]和a∈[-1,1]都恒成立,求实数t的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x2-2,g(x)=xlnx,,
(1)若对一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,求实数a的取值范围;
(2)试判断方程ln(1+x2)-
1
2
f(x)-k=0
有几个实根.
题型:解答题难度:一般| 查看答案
已知函数f(x)对于一切实数x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0,则当x∈(0,
1
2
),不等式f(x)+2<logax恒成立时,实数a的取值范围是______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=aln(x+1)-x2,若在区间(0,1)内任取两个不同实数m,n,不等式
f(m+1)-f(n+1)
m-n
<1恒成立,则实数a的取值范围是______.
题型:填空题难度:简单| 查看答案
已知函数f(x)=
sinπx
(x2+1)(x2-2x+2)
.对于下列命题:
①函数f(x)是周期函数;②函数f(x)既有最大值又有最小值;
③函数f(x)的定义域是R,且其图象有对称轴;
④对于任意x∈(-1,0),f′(x)<0(f′(x)是函数f(x)的导函数).
其中真命题的序号是______.(填写出所有真命题的序号)
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.