已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1.若对任意a,b∈[-1,1],a+b≠0都有f(a)+f(b)a+b>0.(1)判断函数f(x)的单

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1.若对任意a,b∈[-1,1],a+b≠0都有f(a)+f(b)a+b>0.(1)判断函数f(x)的单

题型:解答题难度:一般来源:不详
已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1.若对任意a,b∈[-1,1],a+b≠0都有
f(a)+f(b)
a+b
>0

(1)判断函数f(x)的单调性,并说明理由;
(2)解不等式f(x-
1
2
)+f(x-
1
4
)<0

(3)若不等式f(x)+(2a-1)t-2≤0对所有x∈[-1,1]和a∈[-1,1]都恒成立,求实数t的取值范围.
答案
(1)设任意x1,x2∈[-1,1],且x1<x2
∵f(x)是定义在[-1,1]上的奇函数,
∴f(-x)=-f(x),
∴f(x1)-f(x2)=f(x1)+f(-x2),
∵对任意a,b∈[-1,1],a+b≠0都有
f(a)+f(b)
a+b
>0

f(x1)+f(-x2)
x1+(-x2)
>0,又x1<x2,则x1-x2<0,
∴f(x1)-f(x2)=f(x1)+f(-x2)=
f(x1)+f(-x2)
x1+(-x2)
(x1-x2)
<0,
∴f(x1)-f(x2)<0,
∴f(x)在定义域[-1,1]上位增函数;
(2)∵函数f(x)为奇函数,
∴f(-x)=f(x),又不等式f(x-
1
2
)+f(x-
1
4
)<0
,即f(x-
1
2
)<-f(x-
1
4
),
f(x-
1
2
)<-f(x-
1
4
)=f(
1
4
-x)

由(1)可知,f(x)在定义域[-1,1]上位增函数,





-1≤x-
1
2
≤1
-1≤x-
1
4
≤1
x-
1
2
1
4
-x
,解得-
1
2
≤x<
3
8

∴不等式f(x-
1
2
)+f(x-
1
4
)<0
的解集为{x|-
1
2
≤x<
3
8
};
(3)由(1)可知,f(x)在定义域[-1,1]上位增函数,
∴f(x)max=f(1),又f(1)=1,
∴f(x)max=1,
∵不等式f(x)+(2a-1)t-2≤0对所有x∈[-1,1]和a∈[-1,1]都恒成立,
∴f(x)max≤(1-2a)t+2对任意的a∈[-1,1]都恒成立,
∴1≤-2ta+t+2对任意的a∈[-1,1]都恒成立,





-2t+t+2≥1
2t+t+2≥1
,解得-
1
3
≤t≤1

∴实数t的取值范围为-
1
3
≤t≤1
举一反三
已知函数f(x)=x2-2,g(x)=xlnx,,
(1)若对一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,求实数a的取值范围;
(2)试判断方程ln(1+x2)-
1
2
f(x)-k=0
有几个实根.
题型:解答题难度:一般| 查看答案
已知函数f(x)对于一切实数x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0,则当x∈(0,
1
2
),不等式f(x)+2<logax恒成立时,实数a的取值范围是______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=aln(x+1)-x2,若在区间(0,1)内任取两个不同实数m,n,不等式
f(m+1)-f(n+1)
m-n
<1恒成立,则实数a的取值范围是______.
题型:填空题难度:简单| 查看答案
已知函数f(x)=
sinπx
(x2+1)(x2-2x+2)
.对于下列命题:
①函数f(x)是周期函数;②函数f(x)既有最大值又有最小值;
③函数f(x)的定义域是R,且其图象有对称轴;
④对于任意x∈(-1,0),f′(x)<0(f′(x)是函数f(x)的导函数).
其中真命题的序号是______.(填写出所有真命题的序号)
题型:填空题难度:一般| 查看答案
下列函数中既不是奇函数,又不是偶函数的是(  )
A.y=2|x|B.y=lg(x+


x2+1
)
C.y=2x+2-xD.y=lg
1
x+1
题型:单选题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.